Advertisement

Role of Vesicular-Arbuscular Mycorrhizae in Mobilization of Soil Phosphorus

  • M. LalithaEmail author
  • K. S. Anil Kumar
  • S. Dharumarajan
  • N. Balakrishnan
  • R. Srinivasan
  • K. M. Nair
  • Rajendra Hegde
  • S. K. Singh
Chapter

Abstract

The microorganisms play a vital role in sustaining the crop production through improving the soil properties and plant nutrition. Among the microorganisms VAM (vesicular-arbuscular mycorrhizae) is a beneficial fungus that plays an important role in soil nutrient dynamics and improving soil physical, chemical and biological properties. Though phosphorus is the second macronutrient required in relatively large amounts by plants next to nitrogen, it is one of the most difficult nutrients for plants to acquire because of its low solubility, low mobility and fixation in soil. The mycorrhizal symbiotic association between fungi and plants plays an important role in the uptake of phosphorus. Many experiments have specified that VAM is able to alter mobilization of soil phosphorus of its host plants. The paper summarizes about mycorrhizal symbiosis of VAM involving multistep colonization process, soil phosphorus dynamics in the rhizosphere and mycorrhizal mechanism and pathways involved in phosphorus availability and uptake.

Keywords

Vesicular-arbuscular mycorrhizae Colonization process Soil phosphorus dynamics Phosphorus availability and uptake 

Notes

Acknowledgements

We thank the editors and anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi: 10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  2. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, p 184Google Scholar
  3. Almagrabi OA, Abdelmoneim TS (2012) Using of arbuscular mycorrhizal fungi to reduce the deficiency effect of phosphorous fertilization on maize plants (Zea mays L.) Life Sci J 9(4):1648–1654Google Scholar
  4. Amanullah, Zakirullah M, Khalil SK (2010) Timing and rate of phosphorus application influence maize phenology, yield and profitability in Northwest Pakistan. Int J Plant Prod 4:281–292Google Scholar
  5. Asmah AE (1995) Effect of phosphorus source and rate of application on VAM fungal infection and growth of maize (Zea mays L.). Mycorrhiza 5(3):223–228Google Scholar
  6. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  7. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  8. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi: 10.1007/978-81-322-2776-2_18 Google Scholar
  9. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi: 10.1080/01490451.2016.1219431
  10. Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12(3):547–562Google Scholar
  11. Balzergue C, Puech Pages V, Becard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060CrossRefPubMedGoogle Scholar
  12. Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp l–40Google Scholar
  13. Beauregard MS, Hamel C, Atul-Nayyar St-Arnaud M (2010) Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol 59:379–389CrossRefPubMedGoogle Scholar
  14. Bethlenfalvay GJ, Thomas RS, Dakessian S, Brown MS, Ames RN, Whitehead EE (1988) Mycorrhizae in stressed environments: effects on plant growth, endophyte development, soil stability and soil water. In: Hutchinson CF, Timmermann BN (eds) Arid lands: today and tomorrow. Westview, Boulder, pp 1015–1029Google Scholar
  15. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  16. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  17. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi: 10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  18. Davies FT, Potter JR, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139:289–294CrossRefGoogle Scholar
  19. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi: 10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  20. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. doi: 10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  21. Ezawa T, Hayatsu M, Saito M (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: upregulation of secreted acid phosphatase gene in the host plant. Mol Plant-Microbe Interact 18:1046–1053CrossRefPubMedGoogle Scholar
  22. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126CrossRefPubMedGoogle Scholar
  23. Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2011) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499CrossRefGoogle Scholar
  24. Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599CrossRefGoogle Scholar
  25. Gianinazzi-Pearson V, Trouvelot A, Morandi D, Marocke R (1980) Ecological variations in endomycorrhizas associated with raspberry populations in the Vosges region. Acta Oecologia Ecol Plant 1:111–119Google Scholar
  26. Gianquinto G, Abu-Rayyan A, Tola LD, Piccotino D, Pezzarossa B (2000) Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments. Plant Soil 220:219–228CrossRefGoogle Scholar
  27. Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556. doi: 10.1111/nph.12169 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195CrossRefGoogle Scholar
  29. Islam MN, Hoque S, Islam A (2005) Interactive effects of phosphorus and zinc in wheat, rice and mungbean. J Indian Soc Soil Sci 53:221–227Google Scholar
  30. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi: 10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  31. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  32. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi: 10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  33. Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79CrossRefGoogle Scholar
  34. Kanno S, Arrighi J-F, Chiarenza S, Bayle V, Berthome R, Peret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud M-C, Nussaume L (2016) A novel role for the root cap in phosphate uptake and homeostasis. eLife 5:e14577. doi: 10.7554/eLife.14577 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  36. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  37. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi: 10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  38. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi: 10.1007/s00344-016-9663-5
  39. Liu AC, Hamel RI, Hamilton SDL (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166CrossRefGoogle Scholar
  40. Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874CrossRefPubMedGoogle Scholar
  41. Lu ZG, Grewal HS, Graham RD (1998) Dry matter production and uptake of zinc and phosphorus in two oilseed rape genotypes under differential rates of zinc and phosphorus supply. J Plant Nutr 21:25–38CrossRefGoogle Scholar
  42. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  43. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi: 10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  44. Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66CrossRefPubMedGoogle Scholar
  45. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  46. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1:53–56Google Scholar
  47. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1, 2 & 3):6–12Google Scholar
  48. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  49. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237Google Scholar
  50. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347CrossRefPubMedGoogle Scholar
  51. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  52. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  53. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  54. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  55. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi: 10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  56. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi: 10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  57. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis Agric Biotechnol 4:806–811CrossRefGoogle Scholar
  58. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  59. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  60. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi: 10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  61. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  62. Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2008) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959CrossRefGoogle Scholar
  63. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  64. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30(9):1129–1139. doi: 10.1093/treephys/tpq063 CrossRefPubMedGoogle Scholar
  65. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi: 10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  66. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi: 10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  67. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi: 10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  68. Rathore VP, Singh HP (1995) Influence of vesicular-arbuscular mycorrhizal fungi and phosphate on maize. J Indian Soc Soil Sci 43(2):207–210Google Scholar
  69. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi: 10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  70. Rupa TR, Rao CS, Subba Rao A, Singh M (2003) Effects of farmyard manure and phosphorus on zinc transformations and phyto-availability in two alfisols of India. Bioresour Technol 87(3):279–288CrossRefPubMedGoogle Scholar
  71. Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271CrossRefGoogle Scholar
  72. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi: 10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  73. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  74. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi: 10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  75. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi: 10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  76. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi: 10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  77. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi: 10.5958/2229-4473.2015.00012.9 Google Scholar
  78. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi: 10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  79. Smith SE, Read DJ (1997) Vesicular-arbuscular mycorrhizas. In: Mycorrhizal symbiosis. (2nd ed) Academic, New York, pp 9–126Google Scholar
  80. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  81. Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:l–38CrossRefGoogle Scholar
  82. Smith SE, Smith FA (2011a) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth In Press at Mycologia, published on September 20, 2011 as doi:10.3852/11-229Google Scholar
  83. Smith SE, Smith FA (2011b) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63:227–250CrossRefGoogle Scholar
  84. Smith SE, Jakobsen I, Gronlund M, Andrew Smith F (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057CrossRefPubMedPubMedCentralGoogle Scholar
  85. Subramanian KS, Bharathi C, Jegan A (2008) Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biol Fertil Soils 45:133–144CrossRefGoogle Scholar
  86. Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009) Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Appl Soil Ecol 43:32–39CrossRefGoogle Scholar
  87. Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1(12):532–556Google Scholar
  88. Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395CrossRefGoogle Scholar
  89. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi: 10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  90. Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New YorkGoogle Scholar
  91. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi: 10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  92. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  93. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  94. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  95. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi: 10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  96. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi: 10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  97. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi: 10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • M. Lalitha
    • 1
    Email author
  • K. S. Anil Kumar
    • 1
  • S. Dharumarajan
    • 1
  • N. Balakrishnan
    • 2
  • R. Srinivasan
    • 1
  • K. M. Nair
    • 1
  • Rajendra Hegde
    • 1
  • S. K. Singh
    • 3
  1. 1.Regional CentreICAR-National Bureau of Soil Survey and Land Use PlanningBangaloreIndia
  2. 2.Department of Soil Science and Agricultural ChemistryTamil Nadu Agricultural UniversityCoimbatoreIndia
  3. 3.ICAR-National Bureau of Soil Survey and Land Use PlanningNagpurIndia

Personalised recommendations