Advertisement

Macula Flava and Vocal Fold Stellate Cells of the Human Adult Vocal Fold

  • Kiminori Sato
Chapter

Abstract

  1.  1.

    Human adult maculae flavae are dense masses of cells and extracellular matrices located at the anterior and posterior ends of the membranous portion of the bilateral vocal folds.

     
  2.  2.

    Human maculae flavae are most likely involved in the metabolism of extracellular matrices essential for the viscoelasticity of the human vocal fold mucosa and are considered to be an important structure in the growth, development, and aging of the human vocal fold mucosa.

     
  3.  3.

    The extracellular matrices of human adult maculae flavae are composed of glycoproteins and glycosaminoglycans (hyaluronan) and fibrillar proteins such as collagen fibers, reticular fibers, and elastic fibers.

     
  4.  4.

    Vocal fold stellate cells contained in the human adult maculae flavae were discovered (Sato, Ann Otol Rhinol Laryngol 110: 319-25, 2001). They are stellate in shape and possess vitamin A-storing lipid droplets.

     
  5.  5.

    There are a number of morphological differences between vocal fold stellate cells and fibroblasts in the human vocal fold mucosa.

     
  6.  6.

    Along the surface of the vocal fold stellate cells, a number of vesicles are present and constantly synthesize extracellular matrices which are essential for the viscoelastic properties of the human vocal fold mucosa.

     
  7.  7.

    Vocal fold stellate cells possess cytoplasmic processes and are stellate in shape, desmin-positive cells with perinuclear vitamin A lipid droplets; therefore, the vocal fold stellate cells show the morphological features of hepatic stellate cells. These results are consistent with the concept that the vocal fold stellate cells are a member of the proposed diffuse stellate cell system.

     
  8.  8.

    Radiosensitivity of the vocal fold stellate cells is higher than that of fibroblasts, and radiation induces dysfunction of the vocal fold stellate cells.

     
  9.  9.

    As a result of the heterogeneity seen between vocal fold stellate cells and other interstitial cells, it is uncertain whether they derive from the same embryonic source as fibroblasts in the human vocal fold mucosa.

     
  10. 10.

    The vocal fold stellate cells in the maculae flavae form an independent cell category that should be considered a new category of cells in the human vocal fold mucosa.

     

References

  1. 1.
    Lanz TV, Wachsmuth W. Praktische anatomie hals. Berlin: Springer-Verlag; 1955. p. 282.CrossRefGoogle Scholar
  2. 2.
    Hirano M. Phonosurgery. Basic and clinical investigations. Otologia (Fukuoka). 1975;21(Suppl. 1):239–60.Google Scholar
  3. 3.
    Hirano M, Sato K. Histological color atlas of the human larynx. San Diego, CA: Singular Publishing Group Inc.; 1993.Google Scholar
  4. 4.
    Subotic R, Vecerina S, Krajina Z, Hirano M, Kurita S. Histological structure of vocal fold lamina propria in foetal larynx. Acta Otolaryngol. 1984;97:403–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Vecerina-Volic S, Hirano M, Karovic-Krzelj V. Macula flava in the vocal fold of human fetus. Acta Otolaryngol. 1988;105:144–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Campos Banales ME, Perez Pinero B, Rivero J, Ruiz Casal E, Lopez Aguado D. Histological structure of the vocal fold in the human larynx. Acta Otolaryngol. 1995;115:701–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Fayoux P, Devisme L, Merrot O, Chevalier D, Gosselin B. Histologic structure and development of the laryngeal macula flava. Ann Otol Rhinol Laryngol. 2004;113:498–504.CrossRefPubMedGoogle Scholar
  8. 8.
    Sato K, Hirano M, Nakashima T. Stellate cells in the human vocal fold. Ann Otol Rhinol Laryngol. 2001;110:319–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Sato K, Umeno H, Nakashima T. Vocal fold stem cells and their niche in the human vocal fold. Ann Otol Rhinol Laryngol. 2012;121:798–803.CrossRefPubMedGoogle Scholar
  10. 10.
    Kurita T, Sato K, Chitose S, Fukahori M, Sueyoshi S, Umeno H. Origin of vocal fold stellate cells in the human macula flava. Ann Otol Rhinol Laryngol. 2015;124:698–705.CrossRefPubMedGoogle Scholar
  11. 11.
    Sato K, Chitose S, Kurita T, Umeno H. Microenvironment of macula flava in the human vocal folds as a stem cell niche. J Laryngol Otol. 2016;130:656–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Sato K, Hirano M. Histologic investigation of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104:138–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Sato K, Umeno H, Nakashima T. Functional histology of the macula flava in the human vocal fold. Part 1. Its role in the adult vocal fold. Folia Phoniatr Logop. 2010;62:178–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Sato K, Hirano M, Nakashima T. 3D Structure of the macula flava in the human vocal fold. Acta Otolaryngol. 2003;123:269–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Sato K, Sakamoto K, Nakashima T. Expression and distribution of CD44 and hyaluronic acid in human vocal fold mucosa. Ann Otol Rhinol Laryngol. 2006;115:741–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Sato K, Hirano M. Histologic investigation of the macula flava of the human newborn vocal fold. Ann Otol Rhinol Laryngol. 1995;104:556–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Sato K, Hirano M, Nakashima T. Fine structure of the human newborn and infant vocal fold mucosae. Ann Otol Rhinol Laryngol. 2001;110:417–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Sato K, Umeno H, Nakashima T. Functional histology of the macula flava in the human vocal fold. Part 2. Its role in the growth and development of the vocal fold. Folia Phoniatr Logop. 2010;62:263–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Sato K, Hirano M. Age-related changes of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104:839–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Kurita S, Nagata K, Hirano M. Comparative histology of mammalian vocal folds. In: Kirchner JA, editor. Vocal fold histopathology. A symposium. San Diego, CA: College Hill Press; 1986. p. 1–10.Google Scholar
  21. 21.
    Sato K, Hirano M, Nakashima T. Comparative histology of the maculae flavae of the vocal folds. Ann Otol Rhinol Laryngol. 2000;109:136–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Fuja TJ, Probst-Fuja MN, Titze IR. Changes in expression of extracellular matrix genes, fibrogenic factors, and actin cytoskeletal organization in retinol treated and untreated vocal fold stellate cells. Matrix Biol. 2006;25:59–67.CrossRefPubMedGoogle Scholar
  23. 23.
    Tateya T, Tateya I, Surles RL, Tanumihardjo S, Bless DM. Roles of vitamin A and macula flava in maintaining vocal folds. Ann Otol Rhinol Laryngol. 2008;117:65–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Fuja TJ, Probst-Fuja MN, Titze IR. Transdifferentiation of vocal-fold stellate cells and all-trans retinol-induced deactivation. Cell Tissue Res. 2005;322:417–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Sato K. Reticular fibers in the vocal fold mucosa. Ann Otol Rhinol Laryngol. 1998;107:1023–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Gray SD, Titze IR, Chan R, Hammond TH. Vocal fold proteoglycans and their influence on biomechanics. Laryngoscope. 1999;109:845–54.CrossRefPubMedGoogle Scholar
  27. 27.
    Chan RW, Gray SD, Titze IR. The importance of hyaluronic acid in vocal fold biomechanics. Otolaryngol Head Neck Surg. 2001;124:607–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Sato K, Hirano M, Nakashima T. Vitamin A-storing stellate cells in the human vocal fold. Acta Otolaryngol. 2003;123:106–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Senoo H, Wake K. Histochemical methods for detection of vitamin A. Vitamins (Japan). 1985;59:465–9.Google Scholar
  30. 30.
    Sundaresan PR. Vitamin A and the sulfate-activating enzymes. Biochim Biophys Acta. 1966;113:95–109.CrossRefPubMedGoogle Scholar
  31. 31.
    DeLuca L, Wolf G. Effect of vitamin A on the mucopolysaccharides of lung tissue. Arch Biochem Biophys. 1968;123:1–8.CrossRefGoogle Scholar
  32. 32.
    Levi AS, Geller S, Root DM, Wolf G. The effect of vitamin A and other dietary constituents on the activity of adenosine triphosphate sulphurylase. Biochem J. 1968;109:69–74.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kojima S, Rifkin DB. Mechanism of retinoid-induced activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Physiol. 1993;155:323–32.Google Scholar
  34. 34.
    Eng FJ, Friedman SL, Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol. 2000;279:G7–G11.CrossRefPubMedGoogle Scholar
  35. 35.
    Yamada E, Hirosawa K. The possible existence of a vitamin A-storing cell system. Cell Struct Funct. 1976;1:201–4.CrossRefGoogle Scholar
  36. 36.
    Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao L, Burt AD. The diffuse stellate cell system. J Mol Histol. 2007;38:53–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The extracellular matrix of animal connective tissues. In: Molecular biology of the cell. 5th ed. New York, NY: Garland Science; 2008. p. 1178–204.Google Scholar
  39. 39.
    Ghadially FN. Cytoplasmic matrix and its inclusions. In: Ultrastructural pathology of the cell and matrix, vol. 2. 3rd ed. London: Butterworths; 1988. p. 953–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kiminori Sato
    • 1
  1. 1.Department of Otolaryngology-Head and Neck SurgeryKurume University School of MedicineKurumeshiJapan

Personalised recommendations