Plant Volatiles and Defense

  • Kanta Rani
  • S. S. Arya
  • S. Devi
  • Vikender Kaur


In nature, plants are adversely affected by environmental conditions like abiotic and biotic stresses. In addition to mechanical or physical defensive ways, plants have an important chemical defensive mechanism to cope up with these adverse conditions. Plant volatile organic compounds (VOCs) have various direct and indirect defense roles against various abiotic stresses (like temperature, water stress, ozone, salt stress, and heavy metals) and biotic stresses like herbivores and pathogen (above ground and below ground). In this chapter we review the defensive role of plant VOCs against abiotic and biotic stresses.


Plant defense Plant volatile compounds Temperature Ozone Heavy metals Water stress Salt stress HIPVs and pathogens 


  1. Abdul RW, Michael GP, Tariq A, Ahad AB, Barkat H, Savarimuthu I, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320CrossRefGoogle Scholar
  2. Affek HP, Yakir D (2003) Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Pl Physiol 131:1727–1736CrossRefGoogle Scholar
  3. Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  4. Alessio GA et al (2004) Direct and indirect impacts of fire on the isoprenoids emission from mediterranean vegetation. Funct Ecol 18:357–364CrossRefGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  6. Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105CrossRefGoogle Scholar
  7. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabyashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515PubMedCrossRefGoogle Scholar
  8. Arimura G, Kost C, Boland W (2005) Herbivore – induced, indirect plant defences. Biochim Et Biophys Acta Mol Cell Biol Lipids 1734(2):91–111CrossRefGoogle Scholar
  9. Arimura GI, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923PubMedCrossRefGoogle Scholar
  10. Asensio D, Peñuelas J, Filella I, Llusià J (2007) On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261CrossRefGoogle Scholar
  11. Baier P, Führer E, Kirsitis T, Rosner S (2002) Defense reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. For Ecol Manag 159:73–86CrossRefGoogle Scholar
  12. Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü et al (2005) Ozone induced emissions of biogenic VOC from tobacco: relations between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343CrossRefGoogle Scholar
  13. Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler JP (2007) Transgenic, non-isoprene emitting poplars don’t like it hot. Plant J 51:485–499PubMedCrossRefGoogle Scholar
  14. Behnke K, Kleist E, Uerlings R, Wildt J, Rennenberg H, Schnitzler JP (2009) RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance. Tree Physiol 29:725–736PubMedCrossRefGoogle Scholar
  15. Beis A, Patakas A (2010) Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought. Func Plant Biol 37:139–146CrossRefGoogle Scholar
  16. Bourtsoukidis E, Kawaletz H, Radacki D, Schuetz S, Hakola H, Hellen H, Noe S, Moelder I, Ammer C, Bonn B (2014) Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina. Trees Struct Funct 28:193–120CrossRefGoogle Scholar
  17. Brown GC et al (1995) Green leaf volatiles inhibit conidial germination of the entomopathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). Environ Entomol 24:1637–1643. 66CrossRefGoogle Scholar
  18. Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosyn Res 59:81–93CrossRefGoogle Scholar
  19. Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Mugnozza GS, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661PubMedCrossRefGoogle Scholar
  20. Cao Y, Wu Y, Zheng Z, Song F (2006) Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol 67(3):202–211Google Scholar
  21. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP et al (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89:907–916PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen JW, Bai KD, Cao KF (2009) Inhibition of monoterpene biosynthesis accelerates oxidative stress and leads to enhancement of antioxidant defenses in leaves of rubber tree (Hevea brasiliensis). Acta Physiol Plant 31:95–101. doi: 10.1007/s11738-008-0205-z CrossRefGoogle Scholar
  24. Chinnusamy V, Schumaker K, Zhu J (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefGoogle Scholar
  25. Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–1594PubMedGoogle Scholar
  26. Copolovici L, Niinemets Ulo. Springer International Publishing Switzerland (2016), J.D. Blande, R. Glinwood (eds.), Deciphering Chemical Language of Plant Communication, Signaling and Communication in Plants, Ch. Environmental Impacts on Plant Volatile EmissionGoogle Scholar
  27. Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  28. Copolovici L, Kannaste A, Remmel T, Niinemets U (2014) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63CrossRefGoogle Scholar
  29. Copolovici L, Niinemets Ulo. Springer International Publishing Switzerland (2016), J.D. Blande, R. Glinwood (eds.), Deciphering Chemical Language of Plant Communication, Signaling and Communication in Plants, Ch.Environmental Impacts on Plant Volatile EmissionGoogle Scholar
  30. Croft K, Juttner F, Slusarenko A (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves lnoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Sci 15(3):167–175CrossRefGoogle Scholar
  32. Dong F, Xiumin F, Watanabe N, Xinguo S, Yang Z (2016) Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21(2):124PubMedCrossRefGoogle Scholar
  33. Doupis G, Chartzoulakis K, Beis A, Patakas A (2011) Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aus J Grape Wine Res 17:36–42CrossRefGoogle Scholar
  34. Du MH, Yan XC, Lou YG, Cheng JA (2005) Studies on active chemicals in the saliva of the rice brown planthopper (Nilaparvata lugens) that elicit the production of rice volatiles (in Chinese). J Zhejiang Univ (Agric Life Sci) 31:237–244Google Scholar
  35. Dudareva N, Negra F, Nagegowda D, Orlova I (2006) Plant volatiles : recent advances and future perspectives. Cri Rev Plant Sci 25(5):417–440CrossRefGoogle Scholar
  36. Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974CrossRefGoogle Scholar
  37. Fares S, Loreto F, Kleist E, Wildt J (2008) Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biol 10:44–54PubMedCrossRefGoogle Scholar
  38. Farmer EE, Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10:380–386Google Scholar
  39. Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther A, Hewitt N, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem 4:389–430CrossRefGoogle Scholar
  40. Felix G, Regenass M, Boller T (2000) Sensing of osmotic pressure changes in tomato cells. Plant Physiol 124:1169–1179PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ferrieri RA, Gray DW, Babst BA, Schueller MJ, Schlyer DJ, Thorpe MR et al (2005) Use of carbon-11 in Populus shows that exogenous jasmonic acid increases biosynthesis of isoprene from recently fixed carbon. Plant Cell Environ 28:591–602CrossRefGoogle Scholar
  42. Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer Science+Business Media BV, Berlin, pp 1–20Google Scholar
  43. Francesco Spinelli AC, Livia M, Karthik MN, Chiara P (2011) Emission and function of volatile organic compounds in response to abiotic stress, Abiotic stress in plants - mechanisms and adaptationsGoogle Scholar
  44. Frost CJ, Mescher MC, Dervinis C et al (2008) Priming defense genes and metabolites in hybrid poplar by the green volatile cis-3-hexenyl acetate. New Phytol 180:722–734PubMedCrossRefGoogle Scholar
  45. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedCrossRefGoogle Scholar
  46. Gray DW, Goldstein AH, Lerdau M (2006) Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa. Plant Cell Environ 29:1298–1308PubMedCrossRefGoogle Scholar
  47. Guerrieri E, Poppy GM, Powell W, , Rao, R. Pennacchio, F., (2002) Plant-to-plant communication mediating in -flight orientation of Aphidius ervi. J Chem Ecol 28: 1703–1715PubMedCrossRefGoogle Scholar
  48. Hamilton-Kemp TR, McCracken CT, Loughrin JH, Andersen RA, Hildebrand DF (1992) Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol 18:1083–1091PubMedCrossRefGoogle Scholar
  49. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in antiherbivore defense. Perspect Plant Ecol Evol Syst 8:157–178CrossRefGoogle Scholar
  50. Hansh R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Biotech 12(3):59–266Google Scholar
  51. Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180PubMedCrossRefGoogle Scholar
  52. Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets U, Possell M, Penuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57PubMedCrossRefGoogle Scholar
  53. He CJ, Drew MG, Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol 105:861–865PubMedPubMedCentralCrossRefGoogle Scholar
  54. Heiden AC, Hoffmann T, Kahl J, Kley D, Klockow D, Langebartels C, Mehlhorn H, Sandermann H, Schraudner M, Schuh G, Wildt J (1999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167CrossRefGoogle Scholar
  55. Heiden AC, Kobel K, Langebartels C (2003) Emissions of oxygenated volatile organic compounds from plants part I: emissions from lipoxygenase activity. J Atmos Chem 45:143–172CrossRefGoogle Scholar
  56. Heil M, Bueno JCS (2007) With plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. USA 104:5467–5472PubMedPubMedCentralCrossRefGoogle Scholar
  57. Heil M, Kost C (2006) Priming of indirect defenses. Ecol Lett 9:813–817PubMedCrossRefGoogle Scholar
  58. Hewitt CN, Kok GL, Fall R (1990) Hydroperoxides in plants exposed to ozone mediate air pollution damage to alkene emitters. Nature 344:56–58PubMedCrossRefGoogle Scholar
  59. Hiltpold I, Erb M, Robert CAM, Turlings TCJ (2011) Systemic root signalling in a belowground, volatile mediated tritrophic interaction. Plant Cell Environ 34:1267–1275PubMedCrossRefGoogle Scholar
  60. Holopainen JK (2005) Improvement of biological control by volatile plant compounds. FORSKNINGSNYTT 1:1–2Google Scholar
  61. Holopainen JK, James D Blande (2012). Molecular plant volatile communication. Sensing in Nature, edited by Carlos López-Larrea. ©2012 Landes Bioscience and Springer Science+Business Media pg no 17–31Google Scholar
  62. Horiuchi JI, Badri DV, Kimball BA, Negre F, Dudareva N, Paschke MW, Vivanco JM (2007) The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana. Planta 226:1–10Google Scholar
  63. Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573(1–3):110–116PubMedCrossRefGoogle Scholar
  64. Ionenko IF, Anisimov AV (2001) Effect of water deficit and membrane destruction on water diffusion in the tissues of maize seedlings. Biol Plant 44:247–252CrossRefGoogle Scholar
  65. Jardine KJ, Chambers JQ, Holm J, Jardine AB, Fontes CG, Zorzanelli RF, Meyers KT, de Souza VF, Garcia S, Gimenez BO, Piva LR (2015) Green leaf volatile emissions during high temperature and drought stress in a central Amazon rainforest. Plants 4:678–690PubMedPubMedCentralCrossRefGoogle Scholar
  66. Karban R (2007) Experimental clipping of sagebrush inhibits seed germination of neighbours. Ecol Lett 10:791–797PubMedCrossRefGoogle Scholar
  67. Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  68. Kelsey RG, Joseph G (1997) Ambrosia beetle host selection among logs of Douglas fir, western hemlock, and western red cedar with different ethanol and α-pinene concentrations. J Chem Ecol 23:1035–1051CrossRefGoogle Scholar
  69. Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentate and Nicotiana attenuata. Oecologia 148:280–292PubMedCrossRefGoogle Scholar
  70. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69:2127–2132PubMedCrossRefGoogle Scholar
  71. Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628CrossRefGoogle Scholar
  72. Kunert M, Biedermann A, Koch T, Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci 25:677–684CrossRefGoogle Scholar
  73. Lehning A, Zimmer W, Zimmer I, Schnitzler JP (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geo Res 106D:3157–3166CrossRefGoogle Scholar
  74. Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540PubMedCrossRefGoogle Scholar
  75. Loivamäki M, Gilmer F, Fischbach RJ, Sörgel C, Bachl A, Walter A, Schnitzler JP (2007) Arabidopsis, a model to study biological functions of isoprene emission? Plant Physiol 144:1066–1078PubMedPubMedCentralCrossRefGoogle Scholar
  76. Loreto F, Schnitzler J (2010) Abiotic stresses and induced BVOCs. TrendsPlant Sci 15(3):154–166CrossRefGoogle Scholar
  77. Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531PubMedCrossRefGoogle Scholar
  78. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787PubMedPubMedCentralCrossRefGoogle Scholar
  79. Loreto F, Förster A, Dürr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Enviro 21:101–107CrossRefGoogle Scholar
  80. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000PubMedPubMedCentralCrossRefGoogle Scholar
  81. Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidences for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex (L.) leaves. Tree Physiol 24:361–367PubMedCrossRefGoogle Scholar
  82. Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828PubMedCrossRefGoogle Scholar
  83. Maffei ME (2010) Site of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631CrossRefGoogle Scholar
  84. Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12(7):310–316PubMedCrossRefGoogle Scholar
  85. Mallick N, Mohn FH (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with green microalga Scenedesmus. Ecotoxicol Environ 55:64–69CrossRefGoogle Scholar
  86. Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418CrossRefGoogle Scholar
  87. Mita E, Tsitsimpikou C, Tsiveleka L, Petrakis PV, Ortiz A, Vagias C, Roussis V (2002) Seasonal variation of oleoresin terpenoids from Pinus halepensis and Pinus pinea and host selection of the scale insect Marchalina hellenica (Homoptera, Coccoidea, Margarodidae, Coelostonidiinae). Holzforschung 56:572–578CrossRefGoogle Scholar
  88. Monson RK, Fall R (1989) Isoprene emission from aspen leaves: the influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274PubMedPubMedCentralCrossRefGoogle Scholar
  89. Monson RK, Jaeger CH, Adams WW III, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180PubMedPubMedCentralCrossRefGoogle Scholar
  90. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  91. Nakamura S, Hatanaka A (2002) Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both gram-negative and gram-positive bacteria. J Agric Food 50:7639–7644CrossRefGoogle Scholar
  92. Niinemets U (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153PubMedCrossRefGoogle Scholar
  93. Niinemets U, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Penuelas J, Staudt M (2010) The leaf level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeo 7:1809–1832CrossRefGoogle Scholar
  94. Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla : inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203PubMedCrossRefGoogle Scholar
  95. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189PubMedPubMedCentralCrossRefGoogle Scholar
  96. Owen SM, Penuelas J (2005) Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426PubMedCrossRefGoogle Scholar
  97. Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans. 2. CO2 assimilation and metabolite contents. Plant Physiol 112:1253–1260PubMedPubMedCentralCrossRefGoogle Scholar
  98. Peng HP, Lin TY, Wang NN, Shih MC (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol 58:15–25Google Scholar
  99. Piesik D, Lemńczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542PubMedCrossRefGoogle Scholar
  100. Popp MP, Johnson JD, Lesney MS (1995) Changes in ethylene production and monoterpene concentration in slash pine and loblolly pine following inoculation with bark beetle vectored fungi. Tree Physiol 15:807–812CrossRefGoogle Scholar
  101. Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer Science+Business Media B.V, Berlin, pp 209–235CrossRefGoogle Scholar
  102. Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé MT, Rosahl S, Castresana C (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139(4):1902–1913PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzen J, Turling JCV (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  104. Rico A, Preston GM (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant Microbe Interact 21:269–282CrossRefGoogle Scholar
  105. Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol. 35:163–175PubMedCrossRefGoogle Scholar
  106. Ross SM (1994) Toxic metals in soil – plant systems, vol 469. Wiley, ChichesterGoogle Scholar
  107. Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk W, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences 5:1085–1100CrossRefGoogle Scholar
  108. Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC (2014) Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. New Phytol 201:205–216PubMedCrossRefGoogle Scholar
  109. Sasaki K, Saito T, Lämsä M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1126PubMedCrossRefGoogle Scholar
  110. Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104CrossRefGoogle Scholar
  111. Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res 106:3111–3124CrossRefGoogle Scholar
  112. Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey, PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci. USA 103: 8894–8899Google Scholar
  113. Schnitzler JP, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A et al (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect plant biology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  115. Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735CrossRefGoogle Scholar
  116. Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333PubMedCrossRefGoogle Scholar
  117. Sharkey TD, Schrader SM (2006) High temperature stress. In: Physiology and molecular biology of stress tolerance in plants. Springer, Netherlands, pp 101–129CrossRefGoogle Scholar
  118. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769CrossRefGoogle Scholar
  119. Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436PubMedCrossRefGoogle Scholar
  120. Sharkey TD, Singsaas EL, Vanderveer PJ, Geron CD (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654PubMedCrossRefGoogle Scholar
  121. Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18. doi: 10.1093/aob/mcm240 PubMedCrossRefGoogle Scholar
  123. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci U S A 103:16672–16676PubMedPubMedCentralCrossRefGoogle Scholar
  124. Singh HP, Batish DR, Kaur S, Ramezani H, Kohli RK (2001) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann Appl Biol 141:111–116CrossRefGoogle Scholar
  125. Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) Alpha-pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98:1261–1269PubMedPubMedCentralCrossRefGoogle Scholar
  126. Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757CrossRefGoogle Scholar
  127. Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420PubMedPubMedCentralCrossRefGoogle Scholar
  128. Singsaas EL, Laporte MM, Shi JZ, Monson RK, Bowling DR, Johnson K, Sharkey TD (1999) Kinetics of leaf temperature fluctuation affects isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol 19:917–924PubMedCrossRefGoogle Scholar
  129. Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root- secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58PubMedPubMedCentralCrossRefGoogle Scholar
  130. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedCrossRefGoogle Scholar
  131. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, Nobuke T (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci U S A 111:7144–7149PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804PubMedCrossRefGoogle Scholar
  133. Terry N (1980) Limiting factors in photosynthesis. 1. Use of iron stress to control photochemical capacity in vivo. Plant Physiol 65:114–120PubMedPubMedCentralCrossRefGoogle Scholar
  134. Teuber M, Zimmer I, Kreuzwieser J, Ache P, Polle A, Rennenberg H, Schnitzler JP (2008) VOC emission of grey poplar leaves as affected by salt stress and different N sources. Plant Biol 10:86–96PubMedCrossRefGoogle Scholar
  135. Thomashow MF (1998) Role of cold responsive genes in plant freezing tolerance. Plant Physiol 118:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  136. Thomma BP, Eggermont K, Penninckx IA, MauchMani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111PubMedPubMedCentralCrossRefGoogle Scholar
  137. Timmusk S, Abd El Daim IA, Copolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenstrom E, Niinemets U (2014) Drought tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emission of stress volatiles. PLoS One 9(5)Google Scholar
  138. Tripathi AK, Prajapati V, Aggarwal KK, Kumar S (2001) Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol 94:979–983PubMedCrossRefGoogle Scholar
  139. Turlings TC, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427PubMedCrossRefGoogle Scholar
  140. Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152CrossRefGoogle Scholar
  141. Turlings TCJ, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:51–60CrossRefGoogle Scholar
  142. Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae). Chem Senses 33:35–46PubMedCrossRefGoogle Scholar
  143. Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134(3):1100–1112PubMedPubMedCentralCrossRefGoogle Scholar
  144. Vahala J, Schlagnhaufer CD, Pell EJ (1998) Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol Plant 103:45–50CrossRefGoogle Scholar
  145. Vallelian-Bindschedler L, Schweizer P, Mösinger E, Metraux JP (1998) Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiol Mol Plant Pathol 52:185–199Google Scholar
  146. Van Tol RW, Van Der Sommen AT, Boff MI, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  147. Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424Google Scholar
  148. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  149. Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–553PubMedCrossRefGoogle Scholar
  150. Vierling E (1991) The roles of heat shock proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 42:579–620CrossRefGoogle Scholar
  151. von Dahl CC, Baldwin IT (2009) Use of silenced plants in allelopathy bioassays: a novel approach. Planta 229(3):569–575Google Scholar
  152. Vranova E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333PubMedCrossRefGoogle Scholar
  153. Ward BB, Courtney KJ, Langenheim JH (1997) Inhibition of Nitrosomonas europaea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole cell studies. J Chem Ecol 23:2583–2598CrossRefGoogle Scholar
  154. Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining a virulence on both Arabidopsis and soybean. Plant Cell 3:49–59PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wouter K, Ronald P (2009) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 3(15):126–132Google Scholar
  156. Wu JQ, Hettenhausen C, Melda S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuate. Plant Cell 19:1096–1122PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zakir A (2011) Inducible defenses in herbivore plant interactions: functions mechanisms and manipulations. Introductory paper at the faculty of landscape planning. Hortic Agri Sci 2:1–25Google Scholar
  159. Zakir A, Bengtsson M, Hansson BS, Witzgall P, Anderson P (2009) Herbivore induced volatiles reduce egglaying in Egyptian cotton leafworm. Poster presentation in the 25th annual meeting of International Society of Chemical ecology (ISCE), Neuchatél, SwitzerandGoogle Scholar
  160. Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agri For Entomol 6(1):1–20CrossRefGoogle Scholar
  161. Zhang F, Wang YP, Yang YL, WuH WD, Liu JQ (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus Euphratica. Plant Cell Environ 30:775–785PubMedCrossRefGoogle Scholar
  162. Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall rescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kanta Rani
    • 1
  • S. S. Arya
    • 2
  • S. Devi
    • 3
  • Vikender Kaur
    • 4
  1. 1.Department of BotanyGGDSD CollegePalwalIndia
  2. 2.Department of BotanyMaharshi Dayanand UniversityRohtakIndia
  3. 3.Department of Botany and Plant PhysiologyCCS HAUHisarIndia
  4. 4.Germplasm Evaluation DivisionICAR-NBPGRNew DelhiIndia

Personalised recommendations