Advertisement

Preemptive Epigenetic Medicine Based on Fetal Programming

  • Takeo Kubota
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1012)

Abstract

The developmental origins of health and disease (DOHaD) refers to the concept that environmental stress during pregnancy alters the programmed fetal development and subsequently causes disorders, such as cardiovascular and metabolic diseases, in adulthood. Epigenetics is a gene regulation mechanism that does not depend on DNA sequence but on chemical modifications of DNA. Several lines of evidence suggest that environmental stress in the fetal period alters the epigenetic state of genes, leading to permanent gene dysregulation, which may be associated with disorders that emerge after birth. Such stresses include malnutrition, which may be associated with type 2 diabetes, and mental stress, which may be associated with neurodevelopmental disorders. It has also been demonstrated that environmental stress-induced epigenetic alterations can be transmitted to the next generation via disease phenotypes. However, since epigenetic modification is an internal system based on attachment and detachment of chemical residues on a DNA sequence, it is reversible and potentially treatable. In fact, recent studies demonstrated that some drugs and early interventions are effective at preventing epigenetic disorders. Therefore, preventive and preemptive medicine is possible for disorders caused by alterations in programming during fetal and early periods.

Keywords

DOHaD Epigenetics Epigenome Reversibility Preemptive medicine 

References

  1. 1.
    Fernández MF, Arrebola JP, Jiménez-Díaz I, Sáenz JM, Molina-Molina JM, Ballesteros O, et al. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol. 2016;59:89.  https://doi.org/10.1016/j.reprotox.2015.11.002.CrossRefPubMedGoogle Scholar
  2. 2.
    Workshop report for future scientific technology “Elaboration of preemptive medicine from the fetal and neonatal point of view” by Center for Research and Development Strategy (in Japanese). https://www.jst.go.jp/crds/pdf/2013/WR/CRDS-FY2013-WR-14.pdf. Checked on Feb 20th 2017.
  3. 3.
    Gluckman PD, Seng CY, Fukuoka H, Beedle AS, Hanson MA. Low birthweight and subsequent obesity in Japan. Lancet. 2007;369(9567):1081.  https://doi.org/10.1016/S0140-6736(07)60524-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Countries ranked by Low-birthweight babies (% of births) – IndexMundi. http://www.indexmundi.com Indicators›Health›Nutrition. Checked on Feb 20th 2017.Google Scholar
  5. 5.
    Lumey LH. Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol. 1992;6:240–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84(2):322–7.CrossRefGoogle Scholar
  7. 7.
    St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA. 2005;294(5):557–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PM, Krediet RT, Osmond C, et al. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol. 2005;16(1):189.CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi A, Santo Y, Satomura K. Proteinuria and glomerular hypertrophy in extremely low-birthweight children. Pediatr Int. 2014;56(6):860–84.  https://doi.org/10.1111/ped.12466.CrossRefPubMedGoogle Scholar
  10. 10.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49(6):1774.CrossRefPubMedGoogle Scholar
  11. 11.
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, Yanagisawa M, et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell. 2001;1(6):749–58.CrossRefPubMedGoogle Scholar
  13. 13.
    Sakashita K, Koike K, Kinoshita T, Shiohara M, Kamijo T, Taniguchi S, et al. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development. J Clin Invest. 2001;108(8):1195–204.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Qiu J. Epigenetics: unfinished symphony. Nature. 2006;441(7090):143–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8(1):57–64.  https://doi.org/10.1016/j.coph.2007.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes syndromes and therapies. Lancet Neurol. 2009;8(11):1056–72.  https://doi.org/10.1016/S1474-4422(09)70262-5.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2010;107:18161–6.  https://doi.org/10.1073/pnas.1005595107.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997;16:16–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Kubota T, Wakui K, Nakamura T, Ohashi H, Watanabe Y, Yoshino M, , et al. Proportion of the cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X turner syndrome females. Cytogenet Genome Res 2002;99(1–4):276–284.CrossRefPubMedGoogle Scholar
  20. 20.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Shirohzu H, Kubota T, Kumazawa A, Sado T, Chijiwa T, Inagaki K, et al. Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet. 2002;112(1):31–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Kubota T, Furuumi H, Kamoda T, Iwasaki N, Tobita N, Fujiwara N, , et al. ICF syndrome in a girl with DNA hypomethylation but without detectable DNMT3B mutation. Am J Med Genet A .2004;129A(3):290–293.CrossRefPubMedGoogle Scholar
  23. 23.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2 encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Chunshu Y, Endoh K, Soutome M, Kawamura R, Kubota T. A patient with classic Rett syndrome with a novel mutation in MECP2 exon 1. Clin Genet. 2006;70(6):530–1.CrossRefPubMedGoogle Scholar
  25. 25.
    Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27(3):322–36.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27(3):327–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron. 2002;35(2):243–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499(7458):341–5.  https://doi.org/10.1038/nature12348.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry. 2006;59(5):468–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 2003;302(5646):885–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003;302(5646):890–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet. 2005;37(1):31–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, et al. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol. 2007;66(2):117–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Miyake K, Hirasawa T, Soutome M, Itoh M, Goto Y, Endoh K, et al. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC Neurosci. 2011;12:81.  https://doi.org/10.1186/1471-2202-12-81.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009;65(6):591–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 2006;29(7):349–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev. 2007;29(5):257–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr. 2009;139(5):1054–60.  https://doi.org/10.3945/jn.109.104653.CrossRefPubMedGoogle Scholar
  39. 39.
    Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97(6):1064–73.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Jessberger S, Nakashima K, Clemenson GD Jr, Mejia E, Mathews E, Ure K, et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci. 2007;27(22):5967–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Dong E, Nelson M, Grayson DR, Costa E, Guidotti A. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci U S A. 2008;105(36):13614–9.  https://doi.org/10.1073/pnas.0805493105.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dong E, Chen Y, Gavin DP, Grayson DR, Guidotti A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics. 2010;5(8):730–5.  https://doi.org/10.4161/epi.5.8.13053.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, et al. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res. 2011;21(10):1424–35.  https://doi.org/10.1038/cr.2011.108.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54.CrossRefGoogle Scholar
  46. 46.
    Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, et al. Neuronal activity–induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 2009;323(5917):1074–7.  https://doi.org/10.1126/science.1166859.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8.  https://doi.org/10.1038/nn.2270.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12(12):1559–66.  https://doi.org/10.1038/nn.2436.CrossRefPubMedGoogle Scholar
  49. 49.
    Yehuda R, Bierer LM. The relevance of epigenetics to PTSD: implications for the DSM-V. J Trauma Stress. 2009;22(5):427–34.  https://doi.org/10.1002/jts.20448.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics. 2013;5(2):177–94.  https://doi.org/10.2217/epi.13.8.CrossRefPubMedGoogle Scholar
  51. 51.
    Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics. 2012;4(1):29–40.  https://doi.org/10.2217/epi.11.116.CrossRefPubMedGoogle Scholar
  52. 52.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Miyake K, Yang C, Minakuchi Y, Ohori K, Soutome M, Hirasawa T, Kazuki Y, et al. Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS One. 2013;8(6):e66729.  https://doi.org/10.1371/journal.pone.0066729.CrossRefPubMedGoogle Scholar
  54. 54.
    Silveira PP, Portella AK, Goldani MZ, Barbieri MA. Developmental origins of health and disease (DOHaD). J Pediatr. 2007;83(6):494–504.CrossRefGoogle Scholar
  55. 55.
    Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr. 2008;100(2):278–82.  https://doi.org/10.1017/S0007114507894438.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.  https://doi.org/10.1093/hmg/ddp353.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lim D, Bowdin SC, Tee L. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod. 2009;24(3):741–7.  https://doi.org/10.1093/humrep/den406.CrossRefPubMedGoogle Scholar
  58. 58.
    Bliek J, Alders M, Maas SM, Oostra RJ, Mackay DM, van der Lip K, et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet. 2009;17(12):1625–34.  https://doi.org/10.1038/ejhg.2009.77.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 2013;4:2889.  https://doi.org/10.1038/ncomms3889.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2011;463(7284):1101–5.  https://doi.org/10.1038/nature08829.CrossRefGoogle Scholar
  61. 61.
    Daxinger L, Whitelaw E. Transgenerational epigenetic inheritance: more questions than answers. Genome Res. 2010;20(12):1623–8.  https://doi.org/10.1101/gr.106138.110.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Horsthemke B. Heritable germline epimutations in humans. Nat Genet. 2007;39:573–4.CrossRefPubMedGoogle Scholar
  63. 63.
    Chong S, Youngson NA, Whitelow E. Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet. 2007;39(5):574–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Grossniklaus U, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet. 2013;14(3):228–35.  https://doi.org/10.1038/nrg3435.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AM, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature. 2013;498(7454):385–9.  https://doi.org/10.1038/nature12178.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819(2):137–48.  https://doi.org/10.1016/j.bbagrm.2011.05.001.CrossRefPubMedGoogle Scholar
  67. 67.
    Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480(7376):245–9.  https://doi.org/10.1038/nature10555.CrossRefPubMedGoogle Scholar
  68. 68.
    Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334(6054):369–73.  https://doi.org/10.1126/science.1212959.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rakyan V, Whitelaw E. Transgenerational epigenetic inheritance. Curr Biol. 2003;13(1):R6.CrossRefPubMedGoogle Scholar
  70. 70.
    Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol. 2012;15(5):562–7.  https://doi.org/10.1016/j.pbi.2012.08.004.CrossRefPubMedGoogle Scholar
  71. 71.
    Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100(5):2538–43.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. 2012;41(1):161–76.  https://doi.org/10.1093/ije/dyr233.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kappeler L, Meaney MJ. Epigenetics and parental effects. BioEssays. 2010;32(9):818–27.  https://doi.org/10.1002/bies.201000015.CrossRefPubMedGoogle Scholar
  74. 74.
    Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J. 2007;21(12):3380–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9. Erratum in: Science. 2010;328(5979):690.CrossRefPubMedGoogle Scholar
  76. 76.
    Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8(1):e55387.  https://doi.org/10.1371/journal.pone.0055387.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Seong KH, Li D, Shimizu H, Nakamura R, Ishii S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell. 2011;145(7):1049–61.  https://doi.org/10.1016/j.cell.2011.05.029.CrossRefPubMedGoogle Scholar
  78. 78.
    Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry. 2010;68(5):408–15.  https://doi.org/10.1016/j.biopsych.2010.05.036.CrossRefPubMedGoogle Scholar
  79. 79.
    Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006;147(6):2909–15.CrossRefPubMedGoogle Scholar
  80. 80.
    Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A. 2012;109(23):9143–8.  https://doi.org/10.1073/pnas.1118514109.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome-Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci. 2008;27(12):3342–50.  https://doi.org/10.1111/j.1460-9568.2008.06305.x.CrossRefPubMedGoogle Scholar
  82. 82.
    Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry. 2010;67(7):657–65.  https://doi.org/10.1016/j.biopsych.2009.12.022.CrossRefPubMedGoogle Scholar
  83. 83.
    Nag N, Moriuchi JM, Peitzman CG, Ward BC, Kolodny NH, Berger-Sweeney JE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res. 2009;196(1):44–8.  https://doi.org/10.1016/j.bbr.2008.07.008.CrossRefPubMedGoogle Scholar
  84. 84.
    Kerr B, Silva PA, Walz K, Young JI. Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome. PLoS One. 2010;5:e11534.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315(5815):1143–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Luikenhuis S, Giacometti E, Beard CF, Jaenisch R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A. 2004;101(16):6033–8.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK, et al. A role for glia in the progression of Rett’s syndrome. Nature. 2011;475(7357):497–500.  https://doi.org/10.1038/nature10214.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84(2):131–76.CrossRefPubMedGoogle Scholar
  89. 89.
    Imura H. Life course health care and preemptive approach to non-communicable diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89(10):462–73.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Child StudiesSeitoku UniversityMatsudoJapan

Personalised recommendations