Advertisement

Risk of Neurodevelopmental Disease by Paternal Aging: A Possible Influence of Epigenetic Alteration in Sperm

  • Ryuichi Kimura
  • Kaichi Yoshizaki
  • Noriko OsumiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1012)

Abstract

Sincethe theory of DOHaD has been thrown in the spotlight, most attention has focused on environmental effects of the uterus on developing embryos/fetuses. However, the ontogenesis traces back to gametogenesis. Compared to oogenesis, spermatogenesis goes through far more cell divisions and is therefore more prone to genetic variation and epigenetic alterations. This article will mainly discuss recent findings about the effects of the advanced paternal age on the next generation, in relation to the onset of psychiatric disorders such as autism spectrum disorder. We would like to advocate for further exploration on the DOHaD theory in a wider view.

Keywords

Paternal aging Sperm epigenetics Neurodevelopmental disorder 

Notes

Acknowledgement

This work was supported by Grant-in-Aid from MEXT (16H06530).

References

  1. 1.
    Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351(9097):173–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart. 2000;84(6):595–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944–1945. Arch Gen Psychiatry. 1992;49(12):983–8.CrossRefPubMedGoogle Scholar
  6. 6.
    St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA. 2005;294(5):557–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Statistics and Information Department, Ministry of Health, Labor and Welfare. Tokyo: Vital Statistics of Japan. Available from: http://www.mhlw.go.jp/english/database/db-hw/vs01.html
  8. 8.
    Weintraub K. The prevalence puzzle: autism counts. Nature. 2011;479(7371):22–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63(9):1026–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Sandin S, Schendel D, Magnusson P, Hultman C, Suren P, Susser E, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry. 2015;21:693–700.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingson T, Owen MJ, et al. Paternal age and risk for schizophrenia. Brit J Psychiat. 2003;183:405–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58(4):361–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488(7412):471–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee HY, Jung SE, Oh YN, Choi A, Yang WI, Shin KJ. Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Sci Int Genet. 2015;19:28–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR, et al. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol. 2015;44(4):1199–210.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Foldi CJ, Eyles DW, McGrath JJ, Burne TH. Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice. Eur J Neurosci. 2010;31(3):556–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Sampino S, Juszczak GR, Zacchini F, Swiergiel AH, Modlinski JA, Loi P, et al. Grand-paternal age and the development of autism-like symptoms in mice progeny. Transl Psychiatry. 2014;4:e386.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de la Torre-Ubieta L, Won HJ, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345–61.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Milekic MH, Xin Y, O’Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry. 2015;20(8):995–1001.CrossRefPubMedGoogle Scholar
  24. 24.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 2012;8(1):e1002440.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature. 2012;486(7403):415–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350(6261):aab2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Katz-Jaffe MG, Parks J, McCallie B, Schoolcraft WB. Aging sperm negatively impacts in vivo and in vitro reproduction: a longitudinal murine study. Fertil Steril. 2013;100(1):262–8 e1–2.CrossRefPubMedGoogle Scholar
  32. 32.
    Alio AP, Salihu HM, McIntosh C, August EM, Weldeselasse H, Sanchez E, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6(5):427–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Reichman NE, Teitler JO. Paternal age as a risk factor for low birthweight. Am J Public Health. 2006;96(5):862–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Anderson D, Schmid TE, Baumgartner A. Male-mediated developmental toxicity. Asian J Androl. 2014;16(1):81–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ryuichi Kimura
    • 1
  • Kaichi Yoshizaki
    • 1
  • Noriko Osumi
    • 1
    Email author
  1. 1.Graduate School of MedicineTohoku UniversitySendaiJapan

Personalised recommendations