Advertisement

Involvement of Noncoding RNAs in Stress-Related Neuropsychiatric Diseases Caused by DOHaD Theory

ncRNAs and DOHaD-Induced Neuropsychiatric Diseases
  • Takahiro Nemoto
  • Yoshihiko Kakinuma
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1012)

Abstract

According to the DOHaD theory, low birth weight is a risk factor for various noncommunicable chronic diseases that develop later in life. Noncoding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs, and lncRNAs, are functional RNA molecules that are transcribed from DNA but that are not translated into proteins. In general, miRNAs, siRNAs, and piRNAs function to regulate gene expression at the transcriptional and posttranscriptional levels. Studying ncRNAs has provided opportunities for new diagnosis and therapeutic knowledge in the endocrinological and metabolic fields as well as cancer biology. In this review, we focus on the roles of miRNAs and lncRNAs in the pathophysiology of stress-related neuropsychiatric diseases, which show abnormal blood hormone levels due to loss of feedback control and/or decreased sensitivity. Numerous recent studies have begun to unveil the importance of ncRNAs in regulation of stress-related hormone levels and functions. We summarize the involvement of abnormal ncRNA expression in the development of stress-related neuropsychiatric diseases based on the DOHaD theory.

Keywords

Fetal malnutrition Low birth weight HPA axis Stress ncRNA miRNA lncRNA 

Abbreviations

ACTH

Adrenocorticotropin

ADHD

Attention deficit hyperactivity disorder

CeA

Central nucleus of the amygdala

CRF

Corticotropin-releasing factor

CRF-R

CRF receptor

GR

Glucocorticoid receptor

GRE

Glucocorticoid-responsive element

HFD

High-fat diet

HPA

Hypothalamic-pituitary-adrenal

lncRNA

Long noncoding RNA

miRNA

microRNA

ncRNA

Noncoding RNA

POMC

Proopiomelanocortin

PTSD

Post-traumatic stress disorder

PVN

Paraventricular nucleus of the hypothalamus

UTR

Untranslated region

Notes

Disclosure Statement

The authors have nothing to disclose.

References

  1. 1.
    Newnham JP. The developmental origins of health and disease (DOHaD) – why it is so important to those who work in fetal medicine. Ultrasound Obstet Gynecol. 2007;29(2):121–3.  https://doi.org/10.1002/uog.3938.CrossRefPubMedGoogle Scholar
  2. 2.
    Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.  https://doi.org/10.1111/j.1365-2796.2007.01809.x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, Godfrey K, Gluckman P, Hanson M, Kuh D, Nathanielsz P, Nestel P, Thornburg KL. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625–9.  https://doi.org/10.1203/pdr.0b013e3180459fcd.CrossRefPubMedGoogle Scholar
  4. 4.
    Hanson M. The birth and future health of DOHaD. J Dev Orig Health Dis. 2015;6(5):434–7.  https://doi.org/10.1017/S2040174415001129.CrossRefPubMedGoogle Scholar
  5. 5.
    Fitzhardinge PM, Inwood S. Long-term growth in small-for-date children. Acta Paediatr Scand Suppl. 1989;349:27–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Karlberg J, Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res. 1995;38(5):733–9.  https://doi.org/10.1203/00006450-199511000-00017.CrossRefPubMedGoogle Scholar
  7. 7.
    Takeuchi A, Yorifuji T, Takahashi K, Nakamura M, Kageyama M, Kubo T, Ogino T, Doi H. Neurodevelopment in full-term small for gestational age infants: A nationwide Japanese population-based study. Brain Dev. 2016;38(6):529–37.  https://doi.org/10.1016/j.braindev.2015.12.013.CrossRefPubMedGoogle Scholar
  8. 8.
    Botellero VL, Skranes J, Bjuland KJ, Lohaugen GC, Haberg AK, Lydersen S, Brubakk AM, Indredavik MS, Martinussen M. Mental health and cerebellar volume during adolescence in very-low-birth-weight infants: a longitudinal study. Child Adolesc Psychiatr Ment Health. 2016;10:6.  https://doi.org/10.1186/s13034-016-0093-8.CrossRefGoogle Scholar
  9. 9.
    Harvey S, Phillips JG, Rees A, Hall TR. Stress and adrenal function. J Exp Zool. 1984;232(3):633–45.  https://doi.org/10.1002/jez.1402320332.CrossRefPubMedGoogle Scholar
  10. 10.
    Emeric-Sauval E. Corticotropin-releasing factor (CRF) – a review. Psychoneuroendocrinology. 1986;11(3):277–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Keller-Wood M. Hypothalamic-pituitary – adrenal axis-feedback control. Compr Physiol. 2015;5(3):1161–82.  https://doi.org/10.1002/cphy.c140065.CrossRefPubMedGoogle Scholar
  12. 12.
    de Quervain D, Schwabe L, Roozendaal B. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci. 2017;18(1):7–19.  https://doi.org/10.1038/nrn.2016.155.CrossRefPubMedGoogle Scholar
  13. 13.
    Oliveira M, Rodrigues AJ, Leao P, Cardona D, Pego JM, Sousa N. The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses. Psychopharmacology. 2012;220(3):443–53.  https://doi.org/10.1007/s00213-011-2494-y.CrossRefPubMedGoogle Scholar
  14. 14.
    Shepard JD, Barron KW, Myers DA. Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res. 2000;861(2):288–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Pomara N, Greenberg WM, Branford MD, Doraiswamy PM. Therapeutic implications of HPA axis abnormalities in Alzheimer’s disease: review and update. Psychopharmacol Bull. 2003;37(2):120–34.PubMedGoogle Scholar
  16. 16.
    Schelling G. Post-traumatic stress disorder in somatic disease: lessons from critically ill patients. Prog Brain Res. 2008;167:229–37.  https://doi.org/10.1016/S0079-6123(07)67016-2.CrossRefPubMedGoogle Scholar
  17. 17.
    Wosu AC, Valdimarsdottir U, Shields AE, Williams DR, Williams MA. Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Ann Epidemiol. 2013;23(12):797–811. e792.  https://doi.org/10.1016/j.annepidem.2013.09.006.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol. 2008;581(1–2):113–20.  https://doi.org/10.1016/j.ejphar.2007.12.005.CrossRefPubMedGoogle Scholar
  19. 19.
    Huston JP, Komorowski M, de Souza Silva MA, Lamounier-Zepter V, Nikolaus S, Mattern C, Muller CP, Topic B. Chronic corticosterone treatment enhances extinction-induced depression in aged rats. Horm Behav. 2016;86:21–6.  https://doi.org/10.1016/j.yhbeh.2016.09.003.CrossRefPubMedGoogle Scholar
  20. 20.
    Fischer S, Strawbridge R, Vives AH, Cleare AJ. Cortisol as a predictor of psychological therapy response in depressive disorders: systematic review and meta-analysis. Br J Psychiatry. 2017;210(2):105–9.  https://doi.org/10.1192/bjp.bp.115.180653.CrossRefPubMedGoogle Scholar
  21. 21.
    Paskitti ME, McCreary BJ, Herman JP. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res Mol Brain Res. 2000;80(2):142–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Ordyan NE, Pivina SG, Rakitskaya VV, Shalyapina VG. The neonatal glucocorticoid treatment-produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats. Steroids. 2001;66(12):883–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Riedmann LT, Schwentner R. miRNA, siRNA, piRNA and argonautes: news in small matters. RNA Biol. 2010;7(2):133–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.  https://doi.org/10.1038/sj.emboj.7600385.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.  https://doi.org/10.1101/gad.1262504.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.  https://doi.org/10.1038/nature03868.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 2015;57(3):397–407.  https://doi.org/10.1016/j.molcel.2014.11.030.CrossRefPubMedGoogle Scholar
  28. 28.
    Schneeberger M, Altirriba J, Garcia A, Esteban Y, Castano C, Garcia-Lavandeira M, Alvarez CV, Gomis R, Claret M. Deletion of miRNA processing enzyme dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab. 2012;2(2):74–85.  https://doi.org/10.1016/j.molmet.2012.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nishihara T, Zekri L, Braun JE, Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 2013;41(18):8692–705.  https://doi.org/10.1093/nar/gkt619.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.  https://doi.org/10.1038/nature03702.CrossRefPubMedGoogle Scholar
  31. 31.
    Henshall DC, Hamer HM, Pasterkamp RJ, Goldstein DB, Kjems J, Prehn JH, Schorge S, Lamottke K, Rosenow F. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15(13):1368–76.  https://doi.org/10.1016/S1474-4422(16)30246-0.CrossRefPubMedGoogle Scholar
  32. 32.
    Mitra B, Rau TF, Surendran N, Brennan JH, Thaveenthiran P, Sorich E, Fitzgerald MC, Rosenfeld JV, Patel SA. Plasma micro-RNA biomarkers for diagnosis and prognosis after traumatic brain injury: a pilot study. J Clin Neurosci. 2017;38:37.  https://doi.org/10.1016/j.jocn.2016.12.009.CrossRefPubMedGoogle Scholar
  33. 33.
    Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, Xie A. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci. 2017;38:761.  https://doi.org/10.1007/s10072-017-2841-9.CrossRefPubMedGoogle Scholar
  34. 34.
    Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11):e3694.  https://doi.org/10.1371/journal.pone.0003694.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.  https://doi.org/10.1586/epr.09.17.CrossRefPubMedGoogle Scholar
  36. 36.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.  https://doi.org/10.1093/nar/gkr254.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17(3):189–202.  https://doi.org/10.1007/s00335-005-0066-3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Celic T, Meuth VM, Six I, Massy ZA, Metzinger L. The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Curr Vasc Pharmacol. 2017;15(1):40–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Kugel JF, Goodrich JA. The regulation of mammalian mRNA transcription by lncRNAs: recent discoveries and current concepts. Epigenomics. 2013;5(1):95–102.  https://doi.org/10.2217/epi.12.69.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986–91.  https://doi.org/10.1093/embo-reports/kve230.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699–712.  https://doi.org/10.1038/nrm3679.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8):348–55.  https://doi.org/10.1016/j.tig.2014.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 2015;87:15–24.  https://doi.org/10.1016/j.addr.2015.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hu K, Zhang J, Liang M. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell Dev Biol Anim. 2016;53:277.  https://doi.org/10.1007/s11626-016-0102-5.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.  https://doi.org/10.1016/j.molcel.2011.08.018.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.  https://doi.org/10.1038/nrg3606.CrossRefPubMedGoogle Scholar
  47. 47.
    Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet. 2014;5:164.  https://doi.org/10.3389/fgene.2014.00164.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Smolle E, Haybaeck J. Non-coding RNAs and lipid metabolism. Int J Mol Sci. 2014;15(8):13494–513.  https://doi.org/10.3390/ijms150813494.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. Biochimica et Biophysica Acta. 2016;1863(7 Pt B):1782–90.  https://doi.org/10.1016/j.bbamcr.2016.01.024.CrossRefPubMedGoogle Scholar
  50. 50.
    Rinaldi A, Vincenti S, De Vito F, Bozzoni I, Oliverio A, Presutti C, Fragapane P, Mele A. Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res. 2010;208(1):265–9.  https://doi.org/10.1016/j.bbr.2009.11.012.CrossRefPubMedGoogle Scholar
  51. 51.
    Mannironi C, Camon J, De Vito F, Biundo A, De Stefano ME, Persiconi I, Bozzoni I, Fragapane P, Mele A, Presutti C. Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS One. 2013;8(9):e73385.  https://doi.org/10.1371/journal.pone.0073385.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Schmidt U, Keck ME, Buell DR. miRNAs and other non-coding RNAs in posttraumatic stress disorder: a systematic review of clinical and animal studies. J Psychiatr Res. 2015;65:1–8.  https://doi.org/10.1016/j.jpsychires.2015.03.014.CrossRefPubMedGoogle Scholar
  53. 53.
    Babenko O, Kovalchuk I, Metz GA. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015;48:70–91.  https://doi.org/10.1016/j.neubiorev.2014.11.013.CrossRefPubMedGoogle Scholar
  54. 54.
    Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS, Dunlop BW, Menke A, Awatramani R, Binder EB, Deneris ES, Lowry CA, Chen A. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83(2):344–60.  https://doi.org/10.1016/j.neuron.2014.05.042.CrossRefPubMedGoogle Scholar
  55. 55.
    Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329(5998):1537–41.  https://doi.org/10.1126/science.1193692.CrossRefPubMedGoogle Scholar
  56. 56.
    Song MF, Dong JZ, Wang YW, He J, Ju X, Zhang L, Zhang YH, Shi JF, Lv YY. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J Affect Disord. 2015;178:25–31.  https://doi.org/10.1016/j.jad.2015.02.022.CrossRefPubMedGoogle Scholar
  57. 57.
    Cui X, Sun X, Niu W, Kong L, He M, Zhong A, Chen S, Jiang K, Zhang L, Cheng Z. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monitor. 2016;22:5240–8.CrossRefGoogle Scholar
  58. 58.
    Wang Y, Zhao X, Ju W, Flory M, Zhong J, Jiang S, Wang P, Dong X, Tao X, Chen Q, Shen C, Zhong M, Yu Y, Brown WT, Zhong N. Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry. 2015;5:e660.  https://doi.org/10.1038/tp.2015.144.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ziats MN, Rennert OM. Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci. 2013;49(3):589–93.  https://doi.org/10.1007/s12031-012-9880-8.CrossRefPubMedGoogle Scholar
  60. 60.
    Volk N, Pape JC, Engel M, Zannas AS, Cattane N, Cattaneo A, Binder EB, Chen A. Amygdalar MicroRNA-15a is essential for coping with chronic stress. Cell Rep. 2016;17(7):1882–91.  https://doi.org/10.1016/j.celrep.2016.10.038.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Higuchi F, Uchida S, Yamagata H, Abe-Higuchi N, Hobara T, Hara K, Kobayashi A, Shintaku T, Itoh Y, Suzuki T, Watanabe Y. Hippocampal MicroRNA-124 enhances chronic stress resilience in mice. J Neurosci. 2016;36(27):7253–67.  https://doi.org/10.1523/JNEUROSCI.0319-16.2016.CrossRefPubMedGoogle Scholar
  62. 62.
    Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.  https://doi.org/10.1126/scisignal.2000568.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nemoto T, Mano A, Shibasaki T. miR-449a contributes to glucocorticoid-induced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol. 2013;27(10):1593–602.  https://doi.org/10.1210/me.2012-1357.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nemoto T, Kakinuma Y, Shibasaki T. Restraint-induced glucocorticoid receptor downregulation is dysregulated in high fat diet-fed rats likely from impairment of miR-142-3p expression in the hypothalamus and hippocampus. Am J Life Sci. 2015;3(3–2):24–30.  https://doi.org/10.11648/j.ajls.s.2015030302.15.CrossRefGoogle Scholar
  65. 65.
    Chen PY, Ganguly A, Rubbi L, Orozco LD, Morselli M, Ashraf D, Jaroszewicz A, Feng S, Jacobsen SE, Nakano A, Devaskar SU, Pellegrini M. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics. 2013;45(14):565–76.  https://doi.org/10.1152/physiolgenomics.00034.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D. Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta. 2013;34(7):624–7.  https://doi.org/10.1016/j.placenta.2013.04.009.CrossRefPubMedGoogle Scholar
  67. 67.
    Nishi M, Horii-Hayashi N, Sasagawa T. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci. 2014;8:166.  https://doi.org/10.3389/fnins.2014.00166.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GA. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One. 2013;8(2):e56967.  https://doi.org/10.1371/journal.pone.0056967.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci. 2010;30(45):15007–18.  https://doi.org/10.1523/JNEUROSCI.1436-10.2010.CrossRefPubMedGoogle Scholar
  70. 70.
    Moss TJ, Sloboda DM, Gurrin LC, Harding R, Challis JR, Newnham JP. Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R960–70.CrossRefPubMedGoogle Scholar
  71. 71.
    Mansell T, Novakovic B, Meyer B, Rzehak P, Vuillermin P, Ponsonby AL, Collier F, Burgner D, Saffery R, Ryan J, BISi t. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl Psychiatry. 2016;6:e765.  https://doi.org/10.1038/tp.2016.32.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nemoto T, Kakinuma Y, Shibasaki T. Impaired miR449a-induced downregulation of Crhr1 expression in low-birth-weight rats. J Endocrinol. 2015;224(2):195–203.  https://doi.org/10.1530/JOE-14-0537.CrossRefPubMedGoogle Scholar
  73. 73.
    Murphy MO, Herald JB, Wills CT, Unfried SG, Cohn DM, Loria AS. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress. Am J Phys Endocrinol Metab. 2017;312(2):E98–E108.  https://doi.org/10.1152/ajpendo.00308.2016.CrossRefGoogle Scholar
  74. 74.
    Strata F, Giritharan G, Sebastiano FD, Piane LD, Kao CN, Donjacour A, Rinaudo P. Behavior and brain gene expression changes in mice exposed to preimplantation and prenatal stress. Reprod Sci. 2015;22(1):23–30.  https://doi.org/10.1177/1933719114557900.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cetin I, Mando C, Calabrese S. Maternal predictors of intrauterine growth restriction. Curr Opin Clin Nutr Metab Care. 2013;16(3):310–9.  https://doi.org/10.1097/MCO.0b013e32835e8d9c.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysiologyNippon Medical SchoolTokyoJapan

Personalised recommendations