Advertisement

Fetal Origins of Hypertension

  • Yuichiro Arima
  • Koichi Nishiyama
  • Yasuhiro Izumiya
  • Koichi Kaikita
  • Seiji Hokimoto
  • Kenichi Tsujita
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1012)

Abstract

Hypertension is a common noncommunicable disease. According to the World Health Organization, 1.13 billion people were suffering from hypertension in the year 2015. High blood pressure, hypertension, has a multifactorial etiology. Arterial atherosclerotic changes, systolic or diastolic dysfunction of the heart, and other noncardiac factors are involved. Epidemiological evidence has revealed that perinatal growth disturbance elevates the prevalence of hypertension. However, the specific effects of developmental disturbances on the pathological process of hypertension are poorly understood. Recently, it has become apparent that the perinatal period plays many essential roles in cardiovascular development. In this chapter, we focus on the perinatal development of the cardiovascular system, especially in murine models. Individual organs, blood, blood vessels, and the heart show unique growth characteristics during this period. We also introduce evidence from related clinical studies regarding the developmental origins of hypertension. Finally, evidence from several animal models is presented to reveal the effects of developmental disturbance or stress on arterial pathology. Improving our understanding of both developmental events and the results of clinical studies will give fresh insight into the fetal origins of hypertension.

Keywords

Hypertension Cardiovascular Development 

References

  1. 1.
    Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44.  https://doi.org/10.1242/dev.02568.CrossRefPubMedGoogle Scholar
  2. 2.
    Coskun S, Chao H, Vasavada H, Heydari K, Gonzales N, Zhou X, de Crombrugghe B, Hirschi KK. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Reports. 2014;9(2):581–90.  https://doi.org/10.1016/j.celrep.2014.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coskun S, Hirschi KK. Establishment and regulation of the HSC niche: roles of osteoblastic and vascular compartments. Birth Defects Research Part C, Embryo Today : Reviews. 2010;90(4):229–42.  https://doi.org/10.1002/bdrc.20194.CrossRefGoogle Scholar
  4. 4.
    Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell. 2007;130(3):470–83.  https://doi.org/10.1016/j.cell.2007.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cellular and Molecular Life Sciences : CMLS. 2016;73(8):1547–67.  https://doi.org/10.1007/s00018-016-2134-0.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Antas VI, Al-Drees MA, Prudence AJ, Sugiyama D, Fraser ST. Hemogenic endothelium: a vessel for blood production. The International Journal of Biochemistry & Cell Biology. 2013;45(3):692–5.  https://doi.org/10.1016/j.biocel.2012.12.013.CrossRefGoogle Scholar
  7. 7.
    Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews Molecular Cell Biology. 2007;8(6):464–78.  https://doi.org/10.1038/nrm2183.CrossRefPubMedGoogle Scholar
  8. 8.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.  https://doi.org/10.1038/nature04478.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sapieha P. Eyeing central neurons in vascular growth and reparative angiogenesis. Blood. 2012;120(11):2182–94.  https://doi.org/10.1182/blood-2012-04-396846.CrossRefPubMedGoogle Scholar
  10. 10.
    Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK, Kuppe C, Kaesler N, Chang-Panesso M, Machado FG, Gratwohl S, Madhurima K, Hutcheson JD, Jain S, Aikawa E, Humphreys BD. Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell. 2016;19(5):628–42.  https://doi.org/10.1016/j.stem.2016.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circulation Research. 2013;113(5):603–16.  https://doi.org/10.1161/CIRCRESAHA.113.302095.CrossRefPubMedGoogle Scholar
  12. 12.
    Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Seminars in cell & Developmental Biology. 2016;52:84–92.  https://doi.org/10.1016/j.semcdb.2016.02.004.CrossRefGoogle Scholar
  13. 13.
    Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. Journal of Cardiovascular Pharmacology. 2010;56(2):130–40.  https://doi.org/10.1097/FJC.0b013e3181e74a14.CrossRefPubMedGoogle Scholar
  14. 14.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.  https://doi.org/10.1038/nature08899.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.  https://doi.org/10.1038/nature08804.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.  https://doi.org/10.1126/science.1200708.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Toyoda M, Shirato H, Nakajima K, Kojima M, Takahashi M, Kubota M, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi T. Jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Developmental Cell. 2003;5(1):85–97.CrossRefPubMedGoogle Scholar
  18. 18.
    Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75.  https://doi.org/10.1016/j.cell.2015.05.026.CrossRefPubMedGoogle Scholar
  19. 19.
    Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, Billings J, Mohammadzadeh R, Wood J, Warburton D, Kaartinen V, Lien CL. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Developmental Biology. 2015;399(1):91–9.  https://doi.org/10.1016/j.ydbio.2014.12.018.CrossRefPubMedGoogle Scholar
  20. 20.
    Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. American Journal of Physiology Heart and Circulatory Physiology. 2015;309(8):H1237–50.  https://doi.org/10.1152/ajpheart.00559.2015.CrossRefPubMedGoogle Scholar
  21. 21.
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD, Howard WW, Iismaa SE, Chan AY, Crawford BH, Wagner MB, Martin DI, Lefer DJ, Graham RM, Husain A. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157(4):795–807.  https://doi.org/10.1016/j.cell.2014.03.035.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163(4):1026–36.  https://doi.org/10.1016/j.cell.2015.10.035.CrossRefPubMedGoogle Scholar
  23. 23.
    Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discovery Today. 2014;19(5):602–9.  https://doi.org/10.1016/j.drudis.2013.10.019.CrossRefPubMedGoogle Scholar
  24. 24.
    Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40.  https://doi.org/10.1242/dev.132910.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Uygur A, Lee RT. Mechanisms of cardiac regeneration. Developmental Cell. 2016;36(4):362–74.  https://doi.org/10.1016/j.devcel.2016.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.  https://doi.org/10.1016/j.cell.2009.04.060.CrossRefPubMedGoogle Scholar
  27. 27.
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.  https://doi.org/10.1016/j.cell.2014.03.032.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Arima Y, Miyagawa-Tomita S, Maeda K, Asai R, Seya D, Minoux M, Rijli FM, Nishiyama K, Kim KS, Uchijima Y, Ogawa H, Kurihara Y, Kurihara H. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nature Communications. 2012;3:1267.  https://doi.org/10.1038/ncomms2258.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O’Rourke BP, Sharp DJ, Zheng D, Lenz J, Baldwin HS, Chang CP, Zhou B. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151(5):1083–96.  https://doi.org/10.1016/j.cell.2012.10.023.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345(6192):90–4.  https://doi.org/10.1126/science.1251487.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Osmond C, Barker DJ, Winter PD, Fall CH, Simmonds SJ. Early growth and death from cardiovascular disease in women. Bmj. 1993;307(6918):1519–24.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hanson M. The birth and future health of DOHaD. Journal of Developmental Origins of Health and Disease. 2015;6(5):434–7.  https://doi.org/10.1017/S2040174415001129.CrossRefPubMedGoogle Scholar
  33. 33.
    Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. Birth weight and adult hypertension and obesity in women. Circulation. 1996;94(6):1310–5.CrossRefGoogle Scholar
  34. 34.
    Jarvelin MR, Sovio U, King V, Lauren L, Xu B, McCarthy MI, Hartikainen AL, Laitinen J, Zitting P, Rantakallio P, Elliott P. Early life factors and blood pressure at age 31 years in the 1966 northern Finland birth cohort. Hypertension. 2004;44(6):838–46.  https://doi.org/10.1161/01.HYP.0000148304.33869.ee.CrossRefPubMedGoogle Scholar
  35. 35.
    Sipola-Leppanen M, Vaarasmaki M, Tikanmaki M, Hovi P, Miettola S, Ruokonen A, Pouta A, Jarvelin MR, Kajantie E. Cardiovascular risk factors in adolescents born preterm. Pediatrics. 2014;134(4):e1072–81.  https://doi.org/10.1542/peds.2013-4186.CrossRefPubMedGoogle Scholar
  36. 36.
    Juonala M, Cheung MM, Sabin MA, Burgner D, Skilton MR, Kahonen M, Hutri-Kahonen N, Lehtimaki T, Jula A, Laitinen T, Jokinen E, Taittonen L, Tossavainen P, Viikari JS, Magnussen CG, Raitakari OT. Effect of birth weight on life-course blood pressure levels among children born premature: the Cardiovascular Risk in Young Finns Study. Journal of Hypertension. 2015;33(8):1542–8.  https://doi.org/10.1097/HJH.0000000000000612.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen W, Srinivasan SR, Yao L, Li S, Dasmahapatra P, Fernandez C, Xu J, Berenson GS. Low birth weight is associated with higher blood pressure variability from childhood to young adulthood: the Bogalusa Heart Study. American Journal of Epidemiology. 2012;176(Suppl 7):S99–105.  https://doi.org/10.1093/aje/kws298.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Perng W, Rifas-Shiman SL, Kramer MS, Haugaard LK, Oken E, Gillman MW, Belfort MB. Early weight gain, linear growth, and mid-childhood blood pressure: a prospective study in project viva. Hypertension. 2016;67(2):301–8.  https://doi.org/10.1161/HYPERTENSIONAHA.115.06635.CrossRefPubMedGoogle Scholar
  39. 39.
    Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Human Development. 2006;82(8):485–91.  https://doi.org/10.1016/j.earlhumdev.2006.07.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Hult M, Tornhammar P, Ueda P, Chima C, Bonamy AK, Ozumba B, Norman M. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PloS one. 2010;5(10):e13582.  https://doi.org/10.1371/journal.pone.0013582.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, Feenstra B, van Zuydam NR, Gaulton KJ, Grarup N, Bradfield JP, Strachan DP, Li-Gao R, Ahluwalia TS, Kreiner E, Rueedi R, Lyytikainen LP, Cousminer DL, Wu Y, Thiering E, Wang CA, Have CT, Hottenga JJ, Vilor-Tejedor N, Joshi PK, Boh ET, Ntalla I, Pitkanen N, Mahajan A, van Leeuwen EM, Joro R, Lagou V, Nodzenski M, Diver LA, Zondervan KT, Bustamante M, Marques-Vidal P, Mercader JM, Bennett AJ, Rahmioglu N, Nyholt DR, Ma RC, Tam CH, Tam WH, Group CCHW, Ganesh SK, van Rooij FJ, Jones SE, Loh PR, Ruth KS, Tuke MA, Tyrrell J, Wood AR, Yaghootkar H, Scholtens DM, Paternoster L, Prokopenko I, Kovacs P, Atalay M, Willems SM, Panoutsopoulou K, Wang X, Carstensen L, Geller F, Schraut KE, Murcia M, van Beijsterveldt CE, Willemsen G, Appel EV, Fonvig CE, Trier C, Tiesler CM, Standl M, Kutalik Z, Bonas-Guarch S, Hougaard DM, Sanchez F, Torrents D, Waage J, Hollegaard MV, de Haan HG, Rosendaal FR, Medina-Gomez C, Ring SM, Hemani G, McMahon G, Robertson NR, Groves CJ, Langenberg C, Luan J, Scott RA, Zhao JH, Mentch FD, MacKenzie SM, Reynolds RM, Early Growth Genetics C, Lowe WL, Tonjes A, Stumvoll M, Lindi V, Lakka TA, van Duijn CM, Kiess W, Korner A, Sorensen TI, Niinikoski H, Pahkala K, Raitakari OT, Zeggini E, Dedoussis GV, Teo YY, Saw SM, Melbye M, Campbell H, Wilson JF, Vrijheid M, de Geus EJ, Boomsma DI, Kadarmideen HN, Holm JC, Hansen T, Sebert S, Hattersley AT, Beilin LJ, Newnham JP, Pennell CE, Heinrich J, Adair LS, Borja JB, Mohlke KL, Eriksson JG, Widen E, Kahonen M, Viikari JS, Lehtimaki T, Vollenweider P, Bonnelykke K, Bisgaard H, Mook-Kanamori DO, Hofman A, Rivadeneira F, Uitterlinden AG, Pisinger C, Pedersen O, Power C, Hypponen E, Wareham NJ, Hakonarson H, Davies E, Walker BR, Jaddoe VW, Jarvelin MR, Grant SF, Vaag AA, Lawlor DA, Frayling TM, Smith GD, Morris AP, Ong KK, Felix JF, Timpson NJ, Perry JR, Evans DM, McCarthy MI, Freathy RM. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52.  https://doi.org/10.1038/nature19806.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney International. 1996;49(6):1774–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Zohdi V, Sutherland MR, Lim K, Gubhaju L, Zimanyi MA, Black MJ. Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on Nephron Number and Long-Term Renal Health. International Journal of Nephrology. 2012;2012:136942.  https://doi.org/10.1155/2012/136942.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Louey S, Jonker SS, Giraud GD, Thornburg KL. Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. The Journal of Physiology. 2007;580(Pt. 2):639–48.  https://doi.org/10.1113/jphysiol.2006.122200.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC. Restriction of placental function alters heart development in the sheep fetus. American Journal of Physiology Regulatory, Integrative and Comparative Physiology. 2007;293(1):R306–13.  https://doi.org/10.1152/ajpregu.00798.2006.CrossRefPubMedGoogle Scholar
  46. 46.
    Corstius HB, Zimanyi MA, Maka N, Herath T, Thomas W, van der Laarse A, Wreford NG, Black MJ. Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatric Research. 2005;57(6):796–800.  https://doi.org/10.1203/01.PDR.0000157726.65492.CD.CrossRefPubMedGoogle Scholar
  47. 47.
    Sehgal A, Doctor T, Menahem S. Cardiac function and arterial biophysical properties in small for gestational age infants: postnatal manifestations of fetal programming. The Journal of Pediatrics. 2013;163(5):1296–300.  https://doi.org/10.1016/j.jpeds.2013.06.030.CrossRefPubMedGoogle Scholar
  48. 48.
    Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nature Communications. 2014;5:5288.  https://doi.org/10.1038/ncomms6288.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sim CB, Ziemann M, Kaspi A, Harikrishnan KN, Ooi J, Khurana I, Chang L, Hudson JE, El-Osta A, Porrello ER. Dynamic changes in the cardiac methylome during postnatal development. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 2015;29(4):1329–43.  https://doi.org/10.1096/fj.14-264093.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yuichiro Arima
    • 1
    • 2
  • Koichi Nishiyama
    • 2
  • Yasuhiro Izumiya
    • 1
  • Koichi Kaikita
    • 1
  • Seiji Hokimoto
    • 1
  • Kenichi Tsujita
    • 1
  1. 1.Department of Cardiovascular MedicineKumamoto UniversityKumamotoJapan
  2. 2.International Research Center for Medical ScienceKumamoto UniversityKumamotoJapan

Personalised recommendations