Advertisement

Developmental Origins of Nonalcoholic Fatty Liver Disease (NAFLD)

  • Hiroaki Itoh
  • Naohiro Kanayama
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1012)

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Its prevalence is currently increasing not only in developed obese countries but also in developing countries. Recent findings from human cohorts and animal studies suggest that a nutritional imbalance in the early critical period is causatively associated with the incidence of NAFLD in later life. Based on the current theory of the developmental origins of health and disease (DOHaD), undernourishment and overnourishment in utero are both hypothesized to prime the predisposition for hepatic fat storage. Current knowledge on the developmental origins of NAFLD is introduced in this chapter.

Keywords

Metabolic syndrome Birth weight Obesity Nutrition Pregnancy Developmental origins of health and disease (DOHaD) Fatty liver 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Culture and Sports, Japan (No 15H04882, No.16 K15703).

Disclosures

We have no conflict of interest.

References

  1. 1.
    Eguchi Y, Hyogo H, Ono M, Mizuta T, Ono N, Fujimoto K, Chayama K, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol. 2012;47:586–95.CrossRefPubMedGoogle Scholar
  2. 2.
    Welsh JA, Karpen S, Vos MB. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J Pediatr. 2013;162:496–500 e491.CrossRefPubMedGoogle Scholar
  3. 3.
    Stewart MS, Heerwagen MJ, Friedman JE. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the “first hit”. Clin Obstet Gynecol. 2013;56:577–90.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol. 2009;51:371–9.CrossRefGoogle Scholar
  5. 5.
    Li M, Reynolds CM, Segovia SA, Gray C, Vickers MH. Developmental programming of nonalcoholic fatty liver disease: the effect of early life nutrition on susceptibility and disease severity in later life. Biomed Res Int. 2015;2015:437107.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Masarone M, Federico A, Abenavoli L, Loguercio C, Persico M. Non alcoholic fatty liver: epidemiology and natural history. Rev Recent Clin Trials. 2014;9:126–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Fan JG, Saibara T, Chitturi S, Kim BI, Sung JJ, Chutaputti A. Asia-Pacific working party for N what are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific? J Gastroenterol Hepatol. 2007;22:794–800.CrossRefPubMedGoogle Scholar
  8. 8.
    Karbasi-Afshar R, Saburi A, Khedmat H. Cardiovascular disorders in the context of non-alcoholic fatty liver disease: a literature review. J Tehran Heart Cent. 2014;9:1–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kojima S, Watanabe N, Numata M, Ogawa T, Matsuzaki S. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol. 2003;38:954–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Itoh H, Muramatsu-Kato K, Ferdous UJ, Kohmura-Kobayashi Y, Kanayama N. Undernourishment in utero and hepatic steatosis in later life; a potential issue in Japanese people: a review. Congenit Anom (Kyoto). 2016;57:178–83.CrossRefGoogle Scholar
  11. 11.
    Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, Cristanini G, et al. Prevalence of and risk factors for hepatic steatosis in northern Italy. Ann Intern Med. 2000;132:112–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 1999;30:1356–62.CrossRefGoogle Scholar
  13. 13.
    Luyckx FH, Desaive C, Thiry A, Dewe W, Scheen AJ, Gielen JE, Lefebvre PJ. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes Relat Metab Disord. 1998;22:222–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu CJ. Prevalence and risk factors for non-alcoholic fatty liver disease in Asian people who are not obese. J Gastroenterol Hepatol. 2012;27:1555–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Feng RN, Du SS, Wang C, Li YC, Liu LY, Guo FC, Sun CH. Lean-non-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J Gastroenterol. 2014;20:17932–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, Grove KL, et al. Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes. 2014;63:2702–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nobili V, Cianfarani S, Agostoni C. Programming, metabolic syndrome, and NAFLD: the challenge of transforming a vicious cycle into a virtuous cycle. J Hepatol. 2010;52:788–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Cianfarani S, Agostoni C, Bedogni G, Berni Canani R, Brambilla P, Nobili V, Pietrobelli A. Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int J Obes. 2012;36:1270–7.CrossRefGoogle Scholar
  19. 19.
    Gluckman PD, Hanson MA. Developmental origins of health and disease. Cambridge: Cambridge University Press; 2006.CrossRefGoogle Scholar
  20. 20.
    Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305:1733–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106:272–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hanson MA, Gluckman PD. Developmental origins of health and disease – Global public health implications. Best Pract Res Clin Obstet Gynaecol. 2014;29:24–31.CrossRefPubMedGoogle Scholar
  24. 24.
    Fraser A, Ebrahim S, Smith GD, Lawlor DA. The associations between birthweight and adult markers of liver damage and function. Paediatr Perinat Epidemiol. 2008;22:12–21.PubMedGoogle Scholar
  25. 25.
    Nobili V, Marcellini M, Marchesini G, Vanni E, Manco M, Villani A, Bugianesi E. Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care. 2007;30:2638–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Sandboge S, Perala MM, Salonen MK, Blomstedt PA, Osmond C, Kajantie E, Barker DJ, et al. Early growth and non-alcoholic fatty liver disease in adulthood-the NAFLD liver fat score and equation applied on the Helsinki birth cohort study. Ann Med. 2013;45:430–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Faienza MF, Brunetti G, Ventura A, D’Aniello M, Pepe T, Giordano P, Monteduro M, et al. Nonalcoholic fatty liver disease in prepubertal children born small for gestational age: influence of rapid weight catch-up growth. Horm Res Paediatr. 2013;79:103–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Alisi A, Panera N, Agostoni C, Nobili V. Intrauterine growth retardation and nonalcoholic fatty liver disease in children. Int J Endocrinol. 2011;2011:269853.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Breij LM, Kerkhof GF, Hokken-Koelega AC. Accelerated infant weight gain and risk for nonalcoholic fatty liver disease in early adulthood. J Clin Endocrinol Metab. 2014;99:1189–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92:287–98.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones RH, Ozanne SE. Fetal programming of glucose-insulin metabolism. Mol Cell Endocrinol. 2009;297:4–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Itoh H, Kanayama N. Nutritional conditions in early life and risk of non-communicable diseases (NCDs); the perspective of preemptive medicine in perinatal care. Hypertens Res Preg. 2015;3:1–12.CrossRefGoogle Scholar
  33. 33.
    George LA, Zhang L, Tuersunjiang N, Ma Y, Long NM, Uthlaut AB, Smith DT, et al. Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am J Physiol Regul Integr Comp Physiol. 2012;302:R795–804.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Magee TR, Han G, Cherian B, Khorram O, Ross MG, Desai M. Down-regulation of transcription factor peroxisome proliferator-activated receptor in programmed hepatic lipid dysregulation and inflammation in intrauterine growth-restricted offspring. Am J Obstet Gynecol. 2008;199:271 e271–75.CrossRefGoogle Scholar
  35. 35.
    Muramatsu-Kato K, Itoh H, Kohmura-Kobayashi Y, Ferdous UJ, Tamura N, Yaguchi C, Uchida T, et al. Undernourishment in utero primes hepatic steatosis in adult mice offspring on an obesogenic diet; involvement of endoplasmic reticulum stress. Sci Rep. 2015;5:16867.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yamada M, Wolfe D, Han G, French SW, Ross MG, Desai M. Early onset of fatty liver in growth-restricted rat fetuses and newborns. Congenit Anom (Kyoto). 2011;51:167–73.CrossRefGoogle Scholar
  37. 37.
    Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, Kawamura M, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 2005;1:371–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Kohmura YK, Kanayama N, Muramatsu K, Tamura N, Yaguchi C, Uchida T, Suzuki K, et al. Association between body weight at weaning and remodeling in the subcutaneous adipose tissue of obese adult mice with undernourishment in utero. Reprod Sci. 2013;20:813–27.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kawamura M, Itoh H, Yura S, Mogami H, Suga S, Makino H, Miyamoto Y, et al. Undernutrition in utero augments systolic blood pressure and cardiac remodeling in adult mouse offspring: possible involvement of local cardiac angiotensin system in developmental origins of cardiovascular disease. Endocrinology. 2007;148:1218–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Kawamura M, Itoh H, Yura S, Mogami H, Fujii T, Kanayama N, Konishi I. Angiotensin II receptor blocker candesartan cilexetil, but not hydralazine hydrochloride, protects against mouse cardiac enlargement resulting from undernutrition in utero. Reprod Sci. 2009;16:1005–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet. Br J Nutr. 2007;98:1159–69.CrossRefPubMedGoogle Scholar
  42. 42.
    Erhuma A, Salter AM, Sculley DV, Langley-Evans SC, Bennett AJ. Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am J Physiol Endocrinol Metab. 2007;292:E1702–14.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pooya S, Blaise S, Moreno Garcia M, Giudicelli J, Alberto JM, Gueant-Rodriguez RM, Jeannesson E, et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1alpha hypomethylation and decreased ER-alpha, ERR-alpha, and HNF-4alpha in the rat liver. J Hepatol. 2012;57:344–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Maeyama H, Hirasawa T, Tahara Y, Obata C, Kasai H, Moriishi K, Mochizuki K, et al. Maternal restraint stress during pregnancy in mice induces 11beta-HSD1-associated metabolic changes in the livers of the offspring. J Dev Orig Health Dis. 2015;6:105–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Whitaker RC. Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics. 2004;114:e29–36.CrossRefPubMedGoogle Scholar
  46. 46.
    Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJ, Badger TM. Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol. 2008;294:R528–38.CrossRefPubMedGoogle Scholar
  48. 48.
    Fotbolcu H, Zorlu E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J Gastroenterol. 2016;22:4079–90.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brumbaugh DE, Tearse P, Cree-Green M, Fenton LZ, Brown M, Scherzinger A, Reynolds R, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013;162:930–936 e931.CrossRefPubMedGoogle Scholar
  50. 50.
    Modi N, Murgasova D, Ruager-Martin R, Thomas EL, Hyde MJ, Gale C, Santhakumaran S, et al. The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res. 2011;70:287–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Patel S, Lawlor DA, Callaway M, Macdonald-Wallis C, Sattar N, Fraser A. Association of maternal diabetes/glycosuria and pre-pregnancy body mass index with offspring indicators of non-alcoholic fatty liver disease. BMC Pediatr. 2016;16:47.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vos MB. Furthering the understanding of maternal obesity in nonalcoholic fatty liver disease. Hepatology. 2013;58:4–5.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, Grove KL. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119:323–35.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, Bateman AC, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50:1796–808.CrossRefPubMedGoogle Scholar
  55. 55.
    Bayol SA, Simbi BH, Fowkes RC, Stickland NC. A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology. 2010;151:1451–61.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pruis MG, Lendvai A, Bloks VW, Zwier MV, Baller JF, de Bruin A, Groen AK, et al. Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring. Acta Physiol (Oxf). 2014;210:215–27.CrossRefGoogle Scholar
  57. 57.
    Kjaergaard M, Nilsson C, Rosendal A, Nielsen MO, Raun K. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile. Acta Physiol (Oxf). 2014;210:142–53.CrossRefGoogle Scholar
  58. 58.
    Kruse M, Seki Y, Vuguin PM, Du XQ, Fiallo A, Glenn AS, Singer S, et al. High-fat intake during pregnancy and lactation exacerbates high-fat diet-induced complications in male offspring in mice. Endocrinology. 2013;154:3565–76.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuelsson AM, Pombo J, Maragkoudaki X, Butt A, et al. Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology. 2013;58:128–38.CrossRefPubMedGoogle Scholar
  60. 60.
    Gregorio BM, Souza-Mello V, Carvalho JJ, Mandarim-de-Lacerda CA, Aguila MB. Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet Gynecol. 2010;203:495 e491–98.CrossRefGoogle Scholar
  61. 61.
    Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C, Soeda J, et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol. 2010;52:913–20.CrossRefPubMedGoogle Scholar
  62. 62.
    Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015;6:55–64.CrossRefPubMedGoogle Scholar
  63. 63.
    Silveira PP, Portella AK, Goldani MZ, Barbieri MA. Developmental origins of health and disease (DOHaD). J Pediatr. 2007;83:494–504.CrossRefGoogle Scholar
  64. 64.
    Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94:3246–50.CrossRefGoogle Scholar
  65. 65.
    Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006;88:234–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Prentice AM, Moore SE. Early programming of adult diseases in resource poor countries. Arch Dis Child. 2005;90:429–32.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Katz AR. Noncommunicable diseases: global health priority or market opportunity? An illustration of the World Health Organization at its worst and at its best. Int J Health Serv. 2013;43:437–58.CrossRefPubMedGoogle Scholar
  68. 68.
    Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Muhlhausler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: the brain. Organogenesis. 2008;4:144–52.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Prentice AM, Rayco-Solon P, Moore SE. Insights from the developing world: thrifty genotypes and thrifty phenotypes. Proc Nutr Soc. 2005;64:153–61.CrossRefPubMedGoogle Scholar
  71. 71.
    Wells JC. The thrifty phenotype: an adaptation in growth or metabolism? Am J Hum Biol. 2011;23:65–75.CrossRefPubMedGoogle Scholar
  72. 72.
    Gluckman PD, Hanson MA. The fetal matrix -evolution, development and disease. Cambridge: Cambridge University Press; 2005. p. 78–102.Google Scholar
  73. 73.
    Goto Y. Diseases in the 21st century. J Jpn Soc Study of Obes (Jpn). 2006;12:1–2.Google Scholar
  74. 74.
    Hayashi F, Takimoto H, Yoshita K, Yoshiike N. Perceived body size and desire for thinness of young Japanese women: a population-based survey. Br J Nutr. 2006;96:1154–62.CrossRefPubMedGoogle Scholar
  75. 75.
    Gluckman PD, Seng CY, Fukuoka H, Beedle AS, Hanson MA. Low birthweight and subsequent obesity in Japan. Lancet. 2007;369:1081–2.CrossRefPubMedGoogle Scholar
  76. 76.
    Itoh H, Kanayama N. Low birthweight and risk of obesity -potential problem of Japanese people. Curr Women Health Rev. 2009;5:212–9.CrossRefGoogle Scholar
  77. 77.
    Kubota K, Itoh H, Tasaka M, Naito H, Fukuoka Y, Muramatsu Kato K, Kohmura YK, et al. Changes of maternal dietary intake, bodyweight and fetal growth throughout pregnancy in pregnant Japanese women. J Obstet Gynaecol Res. 2013;39:1383–90.CrossRefPubMedGoogle Scholar
  78. 78.
    Li J, Huang J, Li JS, Chen H, Huang K, Zheng L. Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol. 2012;56:900–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012;23:341–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.CrossRefGoogle Scholar
  81. 81.
    Hotamisligil GS. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes. 2008;32(Suppl 7):S52–4.CrossRefGoogle Scholar
  82. 82.
    Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015;239:192–202.CrossRefPubMedGoogle Scholar
  83. 83.
    Imura H. Life course health care and preemptive approach to non-communicable diseases. Proc Jpn Acad Ser B Phys Biol Sci. 2013;89:462–73.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyHamamatsu University School of MedicineHigashi-ku, HamamatsuJapan

Personalised recommendations