Advertisement

Treatment of Metastatic Bladder Cancer

  • Won Hoon Song
  • Hyeong Dong Yuk
Chapter

Abstract

Most bladder cancer patients present with noninvasive bladder cancer, but 20–40% of patients progress to advanced state with muscle-invasive or metastatic disease (Raghavan, Urol Oncol 21:468–474, 2003). In general, bladder cancer first spreads to lymph nodes and then to distant organs, and invasion of distant organs such as the lung, liver, and bone is a poor prognostic factor for bladder cancer (Loehrer et al., J Clin Oncol 10:1066–1073, 1992). The most common treatment for metastatic bladder cancer is systemic chemotherapy (Loehrer et al., J Clin Oncol 10:1066–1073, 1992). Cisplatin-based chemotherapy was the only treatment approved by the FDA (Vaughn et al., J Clin Oncol 20:937–940, 2002). There is little RCT performed with first-line setting in metastatic bladder cancer. Second-line setting also has few RCTs performed. Although combination chemotherapy has a high initial response rate, the median survival rate for cisplatin-based first-line chemotherapy is 12–15 months, and the 5-year survival rate is about 15% (von der Maase et al., J Clin Oncol 23:4602–4608, 2005; von der Maase et al., J Clin Oncol 19:3068–3077, 2000). In addition, the results of second chemotherapy are limited and have a little evidence that OS and quality of life can be greatly improved based on modest response rates in small, randomized, phase II trials. However, recently, five immunotherapeutic agents (atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab) have been developed and approved by the FDA. It can be used in the second-line setting as well as the first setting in case of ineligibility to cisplatin. Also, immune checkpoint inhibitor-related biomarker and combined immunotherapy have been actively studied, and research on precision medicine.

Keywords

Palliative chemotherapy Metastatic bladder cancer Immunotherapy Biomarker Precision medicine 

References

  1. 1.
    Dash A, Galsky MD, Vickers AJ, Serio AM, Koppie TM, Dalbagni G, Bochner BH. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer. 2006;107(3):506–13.  https://doi.org/10.1002/cncr.22031.CrossRefPubMedGoogle Scholar
  2. 2.
    Galsky MD, Hahn NM, Rosenberg J, et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 2011;12(3):211–4.  https://doi.org/10.1016/S1470-2045(10)70275-8.CrossRefPubMedGoogle Scholar
  3. 3.
    Verger E, Salamero M, Conill C. Can Karnofsky performance status be transformed to the Eastern Cooperative Oncology Group scoring scale and vice versa? Eur J Cancer. 1992;28A(8–9):1328–30.CrossRefGoogle Scholar
  4. 4.
    Friendlander AH, Ettinger RL. Karnofsky performance status scale. Spec Care Dentist. 2009;29(4):147–8.  https://doi.org/10.1111/j.1754-4505.2009.00088.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Stenzl A, Cowan NC, De Santis M, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol. 2011;59(6):1009–18.CrossRefGoogle Scholar
  6. 6.
    Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66.  https://doi.org/10.1056/NEJMoa022148.CrossRefPubMedGoogle Scholar
  7. 7.
    Sternberg CN, de Mulder PH, Schornagel JH, et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J Clin Oncol. 2001;19(10):2638–46.  https://doi.org/10.1200/JCO.2001.19.10.2638.CrossRefGoogle Scholar
  8. 8.
    von der Maase H, Sengelov L, Roberts JT, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23(21):4602–8.  https://doi.org/10.1200/JCO.2005.07.757.CrossRefGoogle Scholar
  9. 9.
    Dash A, Pettus JA, Herr HW, et al. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer. 2008;113(9):2471–7.  https://doi.org/10.1002/cncr.23848.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    International Collaboration of T, Medical Research Council Advanced Bladder Cancer Working P, European Organisation for R, et al. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J Clin Oncol. 2011;29(16):2171–7.  https://doi.org/10.1200/JCO.2010.32.3139.CrossRefGoogle Scholar
  11. 11.
    von der Maase H, Hansen SW, Roberts JT, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18(17):3068–77.  https://doi.org/10.1200/jco.2000.18.17.3068.CrossRefGoogle Scholar
  12. 12.
    Roberts J, von der Maase H, Sengeløv L, et al. Long-term survival results of a randomized trial comparing gemcitabine/cisplatin and methotrexate/vinblastine/doxorubicin/cisplatin in patients with locally advanced and metastatic bladder cancer. Ann Oncol. 2006;17(Suppl 5):v118–22.CrossRefGoogle Scholar
  13. 13.
    Loehrer PJ Sr, Einhorn LH, Elson PJ, et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol. 1992;10(7):1066–73.  https://doi.org/10.1200/jco.1992.10.7.1066.CrossRefPubMedGoogle Scholar
  14. 14.
    Sternberg CN, Yagoda A, Scher HI, et al. Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer. 1989;64(12):2448–58.CrossRefGoogle Scholar
  15. 15.
    Harker WG, Meyers FJ, Freiha FS, et al. Cisplatin, methotrexate, and vinblastine (CMV): an effective chemotherapy regimen for metastatic transitional cell carcinoma of the urinary tract. A Northern California Oncology Group study. J Clin Oncol. 1985;3(11):1463–70.  https://doi.org/10.1200/jco.1985.3.11.1463.CrossRefPubMedGoogle Scholar
  16. 16.
    Bellmunt J, von der Maase H, Mead GM, et al. Randomized phase III study comparing paclitaxel/cisplatin/ gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J Clin Oncol. 2012;30(10):1107–13.  https://doi.org/10.1200/jco.2011.38.6979.CrossRefGoogle Scholar
  17. 17.
    Logothetis CJ, Dexeus FH, Finn L, et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J Clin Oncol. 1990;8(6):1050–5.  https://doi.org/10.1200/JCO.1990.8.6.1050.CrossRefGoogle Scholar
  18. 18.
    Sternberg CN, de Mulder P, Schornagel JH, et al. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. Eur J Cancer. 2006;42(1):50–4.  https://doi.org/10.1016/j.ejca.2005.08.032.CrossRefGoogle Scholar
  19. 19.
    Bamias A, Aravantinos G, Deliveliotis C, et al. Docetaxel and cisplatin with granulocyte colony-stimulating factor (G-CSF) versus MVAC with G-CSF in advanced urothelial carcinoma: a multicenter, randomized, phase III study from the Hellenic Cooperative Oncology Group. J Clin Oncol. 2004;22(2):220–8.  https://doi.org/10.1200/JCO.2004.02.152.CrossRefPubMedGoogle Scholar
  20. 20.
    Gabrilove JL, Jakubowski A, Scher H, et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med. 1988;318(22):1414–22.CrossRefGoogle Scholar
  21. 21.
    Moore MJ, Iscoe N, Tannock IF. A phase II study of methotrexate, vinblastine, doxorubicin and cisplatin plus recombinant human granulocyte-macrophage colony stimulating factors in patients with advanced transitional cell carcinoma. J Urol. 1993;150(4):1131–4.CrossRefGoogle Scholar
  22. 22.
    Von der Maase H, Andersen L, Crino L, et al. Weekly gemcitabine and cisplatin combination therapy in patients with transitional cell carcinoma of the urothelium: a phase II clinical trial. Ann Oncol. 1999;10(12):1461–5.Google Scholar
  23. 23.
    Kaufman D, Raghavan D, Carducci M, et al. Phase II trial of gemcitabine plus cisplatin in patients with metastatic urothelial cancer. J Clin Oncol. 2000;18(9):1921–7.CrossRefGoogle Scholar
  24. 24.
    Adamo V, Magno C, Spitaleri G, et al. Phase II study of gemcitabine and cisplatin in patients with advanced or metastatic bladder cancer: long-term follow-up of a 3-week regimen. Oncology. 2005;69(5):391–8.CrossRefGoogle Scholar
  25. 25.
    Soto Parra H, Cavina R, Latteri F, et al. Three-week versus four-week schedule of cisplatin and gemcitabine: results of a randomized phase II study. Ann Oncol. 2002;13(7):1080–6.CrossRefGoogle Scholar
  26. 26.
    De Santis M, Bellmunt J, Mead G, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol. 2012;30(2):191–9.  https://doi.org/10.1200/jco.2011.37.3571.CrossRefPubMedGoogle Scholar
  27. 27.
    Li J, Juliar B, Yiannoutsos C, et al. Weekly paclitaxel and gemcitabine in advanced transitional-cell carcinoma of the urothelium: a Phase II Hoosier Oncology Group Study. J Clin Oncol. 2005;23(6):1185–91.CrossRefGoogle Scholar
  28. 28.
    Meluch AA, Greco FA, Burris HA III, et al. Paclitaxel and gemcitabine chemotherapy for advanced transitional-cell carcinoma of the urothelial tract: a phase II trial of the Minnie pearl cancer research network. J Clin Oncol. 2001;19(12):3018–24.CrossRefGoogle Scholar
  29. 29.
    Bellmunt J, Théodore C, Demkov T, et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol. 2009;27(27):4454–61.  https://doi.org/10.1200/jco.2008.20.5534.CrossRefPubMedGoogle Scholar
  30. 30.
    Han K, Joung J, Kim T, et al. Methotrexate, vinblastine, doxorubicin and cisplatin combination regimen as salvage chemotherapy for patients with advanced or metastatic transitional cell carcinoma after failure of gemcitabine and cisplatin chemotherapy. Br J Cancer. 2008;98(1):86.CrossRefGoogle Scholar
  31. 31.
    Kim KH, Hong SJ, Han KS. Predicting the response of patients with advanced urothelial cancer to methotrexate, vinblastine, Adriamycin, and cisplatin (MVAC) after the failure of gemcitabine and platinum (GP). BMC Cancer. 2015;15:812.  https://doi.org/10.1186/s12885-015-1825-5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Culine S, Theodore C, De Santis M, et al. A phase II study of vinflunine in bladder cancer patients progressing after first-line platinum-containing regimen. Br J Cancer. 2006;94(10):1395.CrossRefGoogle Scholar
  33. 33.
    Vaughn DJ, Srinivas S, Stadler WM, et al. Vinflunine in platinum-pretreated patients with locally advanced or metastatic urothelial carcinoma. Cancer. 2009;115(18):4110–7.CrossRefGoogle Scholar
  34. 34.
    Sweeney CJ, Roth BJ, Kabbinavar FF, et al. Phase II study of pemetrexed for second-line treatment of transitional cell cancer of the urothelium. J Clin Oncol. 2006;24(21):3451–7.  https://doi.org/10.1200/jco.2005.03.6699.CrossRefPubMedGoogle Scholar
  35. 35.
    Galsky MD, Mironov S, Iasonos A, et al. Phase II trial of pemetrexed as second-line therapy in patients with metastatic urothelial carcinoma. Investig New Drugs. 2007;25(3):265–70.CrossRefGoogle Scholar
  36. 36.
    Papamichael D, Gallagher CJ, Oliver RTD, et al. Phase II study of paclitaxel in pretreated patients with locally advanced/metastatic cancer of the bladder and ureter [Clinical Oncology]. Br J Cancer. 1997;75:606.  https://doi.org/10.1038/bjc.1997.106.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vaughn DJ, Broome CM, Hussain M, et al. Phase II trial of weekly paclitaxel in patients with previously treated advanced urothelial cancer. J Clin Oncol. 2002;20(4):937–40.  https://doi.org/10.1200/JCO.2002.20.4.937.CrossRefPubMedGoogle Scholar
  38. 38.
    McCaffrey JA, Hilton S, Mazumdar M, et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J Clin Oncol. 1997;15(5):1853–7.  https://doi.org/10.1200/jco.1997.15.5.1853.CrossRefPubMedGoogle Scholar
  39. 39.
    Albers P, Siener R, Härtlein M, et al. Gemcitabine monotherapy as second-line treatment in cisplatin-refractory transitional cell carcinoma–prognostic factors for response and improvement of quality of life. Onkologie. 2002;25(1):47–52.PubMedGoogle Scholar
  40. 40.
    Akaza H, Naito S, Usami M, et al. Efficacy and safety of gemcitabine monotherapy in patients with transitional cell carcinoma after cisplatin-containing therapy: a Japanese experience. Jpn J Clin Oncol. 2007;37(3):201–6.  https://doi.org/10.1093/jjco/hym011.CrossRefPubMedGoogle Scholar
  41. 41.
    Witte RS, Elson P, Bono B, et al. Eastern Cooperative Oncology Group phase II trial of ifosfamide in the treatment of previously treated advanced urothelial carcinoma. J Clin Oncol. 1997;15(2):589–93.  https://doi.org/10.1200/jco.1997.15.2.589.CrossRefPubMedGoogle Scholar
  42. 42.
    Dreicer R. Second-line chemotherapy for advanced urothelial cancer: because we should or because we can? Proc Am Soc Clin Oncol. 2009;27(27):4444–5.CrossRefGoogle Scholar
  43. 43.
    Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44.CrossRefGoogle Scholar
  44. 44.
    Seidman AD. The emerging role of paclitaxel in breast cancer therapy. Clin Cancer Res. 1995;1(3):247–56.PubMedGoogle Scholar
  45. 45.
    Papamichael D, Gallagher C, Oliver R, et al. Phase II study of paclitaxel in pretreated patients with locally advanced/metastatic cancer of the bladder and ureter. Br J Cancer. 1997;75(4):606.CrossRefGoogle Scholar
  46. 46.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.  https://doi.org/10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  47. 47.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315.CrossRefGoogle Scholar
  48. 48.
    Rouanne M, Loriot Y, Lebret T, et al. Novel therapeutic targets in advanced urothelial carcinoma. Crit Rev Oncol Hematol. 2016;98:106–15.  https://doi.org/10.1016/j.critrevonc.2015.10.021.CrossRefPubMedGoogle Scholar
  49. 49.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252.CrossRefGoogle Scholar
  50. 50.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefGoogle Scholar
  51. 51.
    Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.  https://doi.org/10.1038/nature13904.CrossRefGoogle Scholar
  52. 52.
    Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.  https://doi.org/10.1016/S0140-6736(16)00561-4.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sharma P, Callahan MK, Bono P, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016;17(11):1590–8.  https://doi.org/10.1016/S1470-2045(16)30496-X.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med. 2017;376(11):1015–26.  https://doi.org/10.1056/NEJMoa1613683.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Apolo AB, Infante JR, Balmanoukian A, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol. 2017;35(19):2117–24.  https://doi.org/10.1200/JCO.2016.71.6795.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Powles T, O’Donnell PH, Massard C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411.  https://doi.org/10.1001/jamaoncol.2017.2411.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Boorjian SA, Sheinin Y, Crispen PL, et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008;14(15):4800–8.  https://doi.org/10.1158/1078-0432.CCR-08-0731.CrossRefPubMedGoogle Scholar
  58. 58.
    Faraj SF, Munari E, Guner G, et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology. 2015;85(3):703 e1–6.  https://doi.org/10.1016/j.urology.2014.10.020.CrossRefPubMedGoogle Scholar
  59. 59.
    Inman BA, Sebo TJ, Frigola X, et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499–505.  https://doi.org/10.1002/cncr.22588.CrossRefPubMedGoogle Scholar
  60. 60.
    Plimack ER, Bellmunt J, Gupta S, et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012. Proc Am Soc Clin Oncol. 2015;33(7):296.Google Scholar
  61. 61.
    Bellmunt J, Bajorin DF. Pembrolizumab for advanced urothelial carcinoma. N Engl J Med. 2017;376(23):2304.  https://doi.org/10.1056/NEJMc1704612.CrossRefPubMedGoogle Scholar
  62. 62.
    Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.  https://doi.org/10.1016/S0140-6736(16)32455-2.CrossRefPubMedGoogle Scholar
  63. 63.
    Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.CrossRefGoogle Scholar
  64. 64.
    Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41.  https://doi.org/10.1038/nrc3817.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Carneiro BA, Meeks JJ, Kuzel TM, et al. Emerging therapeutic targets in bladder cancer. Cancer Treat Rev. 2015;41(2):170–8.  https://doi.org/10.1016/j.ctrv.2014.11.003.CrossRefPubMedGoogle Scholar
  66. 66.
    Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158(6):1955–9.  https://doi.org/10.1016/S0002-9440(10)64665-2.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zieger K, Dyrskjot L, Wiuf C, et al. Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clin Cancer Res. 2005;11(21):7709–19.  https://doi.org/10.1158/1078-0432.CCR-05-1130.CrossRefPubMedGoogle Scholar
  68. 68.
    Hernandez S, Lopez-Knowles E, Lloreta J, et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol. 2006;24(22):3664–71.  https://doi.org/10.1200/JCO.2005.05.1771.CrossRefPubMedGoogle Scholar
  69. 69.
    Milowsky MI, Dittrich C, Durán I, et al. Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. Eur J Cancer. 2014;50(18):3145–52.CrossRefGoogle Scholar
  70. 70.
    Fechner G, Claßen K, Schmidt D, et al. Rapamycin inhibits in vitro growth and release of angiogenetic factors in human bladder cancer. Urology. 2009;73(3):665–8.CrossRefGoogle Scholar
  71. 71.
    Petrylak DP, Tangen CM, Van Veldhuizen PJ, et al. Results of the Southwest Oncology Group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int. 2010;105(3):317–21.CrossRefGoogle Scholar
  72. 72.
    Powles T, Huddart RA, Elliott T, et al. A phase II/III, double-blind, randomized trial comparing maintenance lapatinib versus placebo after first line chemotherapy in HER1/2 positive metastatic bladder cancer patients. Proc Am Soc Clin Oncol. 2015;33(15):4505.Google Scholar
  73. 73.
    Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.CrossRefGoogle Scholar
  74. 74.
    Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9):3463–72.CrossRefGoogle Scholar
  75. 75.
    Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152–65.CrossRefGoogle Scholar
  76. 76.
    Rebouissou S, Bernard-Pierrot I, de Reyniès A, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med. 2014;6(244):244ra91.CrossRefGoogle Scholar
  77. 77.
    Volkmer J-P, Sahoo D, Chin RK, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci. 2012;109(6):2078–83.CrossRefGoogle Scholar
  78. 78.
    Lerner SP, McConkey DJ, Hoadley KA, et al. Bladder cancer molecular taxonomy: summary from a consensus meeting. Bladder Cancer. 2016;2(1):37–47.CrossRefGoogle Scholar
  79. 79.
    Smith SC, Baras AS, Lee JK, et al. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res. 2010;70(5):1753–8.CrossRefGoogle Scholar
  80. 80.
    Lee JK, Havaleshko DM, Cho H, et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci. 2007;104(32):13086–91.CrossRefGoogle Scholar
  81. 81.
    Dahm P, Gschwend JE. Malignant non-urothelial neoplasms of the urinary bladder: a review. Eur Urol. 2003;44(6):672–81.CrossRefGoogle Scholar
  82. 82.
    Galsky MD, Iasonos A, Mironov S, et al. Prospective trial of ifosfamide, paclitaxel, and cisplatin in patients with advanced non-transitional cell carcinoma of the urothelial tract. Urology. 2007;69(2):255–9.  https://doi.org/10.1016/j.urology.2006.10.029.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Won Hoon Song
    • 1
  • Hyeong Dong Yuk
    • 1
  1. 1.Seoul National University HospitalSeoulSouth Korea

Personalised recommendations