Pollen Allergy

  • Jae-Won Oh
Chapter

Abstract

Charles Blackley was the first to demonstrate that pollen has an impact on human health. He performed the first pollen provocation tests on himself by applying several pollen types to the nostrils, the conjunctiva, the tongue and lips, by inhaling it and by inoculating the upper and lower limbs. Furthermore, he demonstrated that the amount of pollen in the atmosphere was correlated with the severity of his own symptoms [1]. Nowadays, it was well known that proteins carried by pollen as allergens can evoke specific responses in the immune system. At first individuals can get sensitized to the allergens and subsequently these IgE-sensitized individuals can respond to the allergens with allergic symptoms. These can consist of nasal symptoms, eye symptoms, or bronchial asthma, or a combination of these. The level of allergen exposure can vary with the location, the weather or the time of year and it is a relevant determinant for both sensitization and symptom development. Allergenic pollen not only appeared to interact with the human immune system to elicit an allergic response in sensitized individuals but it has other effects as well [2].

References

  1. 1.
    Waite KJ. Blackley and the development of hay fever as a disease of civilization in the nineteenth century. Med Hist. 1995;39:186–96.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H. Impact of pollen on human health: more than allergen carriers? Int Arch Allergy Immunol. 2003;131:1–13.CrossRefPubMedGoogle Scholar
  3. 3.
    Asher MI, Stewart AW, Mallol J, Montefort S, Lai CK, Aït-Khaled N, Odhiambo J. Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC Phase One. Respir Res. 2010;11:8–12.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Frei T, Gassner E. Trends in prevalence of allergic rhinitis and correlation with pollen counts in Switzerland. Int J Biometeorol. 2008;52:841–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Charpin D, Hughes B, Mallea M, Sutra JP, Balansard G, Vervloet D. Seasonal allergic symptoms and their relation to pollen exposure in south-east France. Clin Exp Allergy. 1993;23:435–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Burr ML, Emberlin JC, Treu R, Cheng S, Pearce NE. Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clin Exp Allergy. 2003;33:1675–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52. e7CrossRefPubMedGoogle Scholar
  8. 8.
    Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J Allergy Clin Immunol. 2009;123:558–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Riedl M, Diaz-Sanchez D. Biology of diesel exhausts effects on respiratory function. J Allergy Clin Immunol. 2005;115:221–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A. Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol. 1999;104:1183–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, Mueller MJ, Jakob T, Behrendt H. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med. 2005;201:627–36.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Taylor PE, Flagan RC, Miguel AG, Valenta R, Glovsky MM. Birch pollen rupture and the release of aerosols of respirable allergens. Clin Exp Allergy. 2004;34:1591–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Spieksma FT, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM. Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana. 1995;34:51–7.CrossRefGoogle Scholar
  14. 14.
    Grote M, Valenta R, Reichelt R. Study of sensitivity of Fraxinus spp. (Oleaceae) in Córdoba, Spain. J Investig Allergol Clin Immunol. 2003;5:166–70.Google Scholar
  15. 15.
    Rapiejko P, Stanlaewicz W, Szczygielski K, Jurkiewicz D. Threshold pollen count necessary to evoke allergic symptoms. Otolaryngol Pol. 2007;61(4):591–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Rantio-Lehtimäki A, Koivikko A, Kupias R, Makinen Y, Pohjola A. Significance of sampling height of airborne particles for aerobiological information. Allergy. 1991;46(1):68–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Thibaudon M. Allergy risk associated with pollens in France. Euro annal allergy. Clin Immunol. 2003;35:170–2.Google Scholar
  18. 18.
    Viander M, Koivikko A. The seasonal symptoms of hyposensitized and untreated hay fever patients in relation to birch pollen counts: correlations with nasal sensitivity, prick tests and RAST. Clin Allergy. 1978;8(4):387–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Waisel Y, Mienis Z, Kosman E, Geller-Bernstein C. The partial contribution of specific airborne pollen to pollen induced allergy. Aerobiologia. 2004;20(4):197–208.CrossRefGoogle Scholar
  20. 20.
    Alcázar P, Cariñanos P, De Castro C, Guerra F, Moreno C, Domínguez-Vilches E, Galán C. Airborne plane-tree (Platanus hispanica) pollen distribution in the city of Córdoba, South-western Spain, and possible implications on pollen allergy. J Investig Allergol Clin Immunol. 2004;14(3):238–43.PubMedGoogle Scholar
  21. 21.
    Davies R, Smith LP. Forecasting the start and severity of the hay fever season. Clin Allergy. 1973;3:263–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Lipiec A, Rapiejko P, Samolinski B, Krzych E. Correlation between conjunctival provocation test results and conjunctival symptoms in pollinosis – preliminary report. Ann Agric Environ Med. 2005;12:17–20.PubMedGoogle Scholar
  23. 23.
    Galán G, Alcázar P, Domínguez E, Villamandos F, Infante F. Airborne pollen rains concentration at two different heights. Aerobiologia. 1995;11:105–9.CrossRefGoogle Scholar
  24. 24.
    Alcázar P, Galán C, Cariñanos P, Domínguez E. Vertical variation in Urticaceae airborne pollen concentration. Aerobiologia. 1998;14:131–4.CrossRefGoogle Scholar
  25. 25.
    Alcázar P, Galán C, Cariñanos P, Domínguez E. Diurnal variations of airborne pollen at two different heights. J Investig Allergol Clin Immunol. 1999;9:89–95.PubMedGoogle Scholar
  26. 26.
    Alcázar P, Galán C, Cariñanos P, Domínguez E. Effects of sampling height and climatic conditions in aerobiological studies. J Investig Allergol Clin Immunol. 1999;9:253–61.PubMedGoogle Scholar
  27. 27.
    Singh K, Axelrod S, Bielory L. The epidemiology of ocular and nasal allergy in the United States, 1988–1994. J Allergy Clin Immunol. 2010;126:778–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Di Lorenzo G, Pacor ML, Amodio E, et al. Differences and similarities between allergic and nonallergic rhinitis in a large sample of adult patients with rhinitis symptoms. Int Arch Allergy Immunol. 2011;155:263–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Brozek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126:466–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Connell JT. Quantitative intranasal pollen challenge: III. The priming effect in allergic rhinitis. J Allergy. 1969;43:33.CrossRefPubMedGoogle Scholar
  31. 31.
    Wachs M, Proud D, Lichtenstein LM, et al. Observations on the pathogenesis of nasal priming. J Allergy Clin Immunol. 1989;84:492–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Naclerio RM, Meier HL, Kagey-Sobotka A, et al. Mediator release after airway challenge with antigen. Am Rev Respir Dis. 1983;128:597–602.PubMedGoogle Scholar
  33. 33.
    Castells M, Schwartz LB. Tryptase levels in nasal lavage fluid as an indicator of the early allergic reaction. J Allergy Clin Immunol. 1988;82:348–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Baumgarten CR, Togias AG, Naclerio RM, et al. Influx of kininogens into nasal secretions following antigen challenge of allergic individuals. J Clin Invest. 1985;76:191.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Freeland H, Pipkorn U, Schleimer RP, et al. Leukotriene B. J Allergy Clin Immunol. 1989;83:634–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Bascom R, Pipkorn U, Proud D, et al. Major basic protein and eosinophil-derived neurotoxin concentrations in nasal lavage fluid after antigen challenge: effect of systemic corticosteroids and relationship to eosinophil influx. J Allergy Clin Immunol. 1989;84:338–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Miadonna A, Tedeschi A, Arnoux B, et al. Evidence of PAF-acether metabolic pathway activation in antigen challenge of upper respiratory airways. Am Rev Respir Dis. 1989;140:142–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Dvoracek JE, Yunginger JW, Kern EB, et al. Induction of nasal late-phase reactions by insufflation of ragweed-pollen extract. J Allergy Clin Immunol. 1984;73:363–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Sim TC, Grant JA, Hilsmeier KA, et al. Proinflammatory cytokines in nasal secretions of allergic subjects after antigen challenge. Am J Respir Crit Care Med. 1994;149:339–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Gosset P, Malaguin F, Delneste Y, et al. Interleukin-6 and interleukin-1 alpha production is associated with antigen-induced late nasal response. J Allergy Clin Immunol. 1993;92:878–83.CrossRefPubMedGoogle Scholar
  41. 41.
    Rondón C, Campo P, Galindo L, Blanca-López N, Cassinello MS, Rodriguez-Bada JL, Torres MJ, Blanca M. Prevalence and clinical relevance of local allergic rhinitis. Allergy. 2012;67:1282–8.CrossRefPubMedGoogle Scholar
  42. 42.
    De Schryver E, Devuyst L, Derycke L, Dullaers M, Van Zele T, Bachert C, Gevaert P. Local immunoglobulin E in the nasal mucosa: clinical implications. Allergy Asthma Immunol Res. 2015;7:321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sensi LG, Piacentini GL, Nobile E, Ghebregzabher M, Brunori R, Zanolla L, et al. Changes in nasal specific IgE to mites after periodsof allergen exposure-avoidance: a comparison with serum levels. Clin Exp Allergy. 1994;24:377–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Abelson MB, Baird RS, Allansmith MR. Tear histamine levels in vernal conjunctivitis and other ocular inflammations. Ophthalmology. 1980;87:812–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Venza I, Visalli M, Ceci G, Teti D. Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res. 2004;36:62–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Butrus SI, Ochsner KI, Abelson MB, Schwartz LB. The level of tryptase in human tears. An indicator of activation of conjunctival mast cells. Ophthalmology. 1990;97:1678–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Eperon S, Sauty A, Lanz R, et al. Eotaxin-1 (CCL11) up-regulation in tears during seasonal allergic conjunctivitis. Graefes Arch Clin Exp Ophthalmol. 2004;242:966–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Sly PD, Flack F. Susceptibility of children to environmental pollutants. Ann N Y Acad Sci. 2008;1140:163–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Sly PD, Holt PG, Stein R, et al. Asthma: disease mechanisms and cell biology. In: Taussig LM, Landau LI, LeSouef PN, editors. Pediatric respiratory medicine. 2nd ed. St Louis: Mosby; 2008. p. 791–804.CrossRefGoogle Scholar
  50. 50.
    The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet. 1998;351:1225–32.CrossRefGoogle Scholar
  51. 51.
    Rubin BK, Tomkiewicz R, Fahy JV, Green FH. Histopathology of fatal asthma: drowning in mucus. Pediatr Pulmonol. 2001;S23:88–9.CrossRefGoogle Scholar
  52. 52.
    Carroll N, Carello S, Cooke C, James A. Airway structure and inflammatory cells in fatal attacks of asthma. Eur Respir J. 1996;9:709–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Nadel JA. Role of epidermal growth factor receptor activation in regulating mucin synthesis. Respir Res. 2001;2:85–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cohen L, Tarsi J, Ramkumar T, et al. Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am J Respir Crit Care Med. 2007;176:138–45.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brewster CE, Howarth PH, Djukanovic R, et al. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol. 1990;3:507–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Vanselow NA. Skin testing and other diagnostic procedures. In: Sheldon JM, Lovell RG, Mathews KP, editors. A manual of clinical allergy. 2nd ed. Philadelphia: WB Saunders Company; 1967.Google Scholar
  57. 57.
    Wide L, Bennich H, Johansson SGO. Diagnosis by an in vitro test for allergen specific IgE antibodies. Lancet. 1967;2:1105–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Butler JE, Hamilton RG. Quantification of specific antibodies: methods of expression, standards, solid phase considerations and specific applications. In: Butler JE, editor. Immunochemistry of solid phase immunoassays. Boca Raton: CRC Press; 1991. p. 173–98.Google Scholar
  59. 59.
    Hiller R, Laffer S, Harwanegg C, Huber M, Schmidt WM, Twardosz A, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 2002;16:414–40.CrossRefPubMedGoogle Scholar
  60. 60.
    Gentile DA, Bartholow A, Valovirata E, Scadding G, Skoner D. Current and future directions in pediatric allergic rhinitis. J Allergy Clin Immunol Pract. 2013;1:214–26.CrossRefPubMedGoogle Scholar
  61. 61.
    Schad CA, Skoner DP. Antihistamines in the pediatric population: achieving optimal outcomes when treating seasonal allergic rhinitis and chronic urticaria. Allergy Asthma Proc. 2008;29:7–13.CrossRefPubMedGoogle Scholar
  62. 62.
    Mygind N, Nielsen LP, Hoffman HJ, Shukla A, Blumberga G, Dahl R, et al. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol. 2001;108:S16–25.CrossRefPubMedGoogle Scholar
  63. 63.
    Szefler SJ. Pharmacokinetics of intranasal corticosteroids. J Allergy Clin Immunol. 2001;108:S26–31.CrossRefPubMedGoogle Scholar
  64. 64.
    Scadding GK. Corticosteroids in the treatment of pediatric allergic rhinitis. J Allergy Clin Immunol. 2001;108:S26–31.CrossRefGoogle Scholar
  65. 65.
    Philip G, Malmstrom K, Hampel FC, et al. Montelukast for treating seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial performed in the spring. Clin Exp Allergy. 2002;32:1020–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Meltzer EO, Malmstrom K, Lu S, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol. 2000;105:917–22.CrossRefPubMedGoogle Scholar
  67. 67.
    Borum P, Mygind N, Schultz LF. Intranasal ipratropium, a new treatment for perennial rhinitis. Clin Otolaryngol. 1979;4:407–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Bronsky EA, Druce H, Findlay SR, et al. A clinical trial of ipratropium bromide nasal spray in patients with perennial nonallergic rhinitis. J Allergy Clin Immunol. 1995;95:1117–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Silvers WS. The skier’s nose: a model of cold-induced rhinorrhea. Ann Allergy Asthma Immunol. 1991;67:32–6.Google Scholar
  70. 70.
    Raphael G, Raphael MH, Kaliner M. Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol. 1989;83:110–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Frankland AW, Augustin R. Prophylaxis of summer hay-fever and asthma: a controlled trial comparing crude grass-pollen extracts with the isolated main protein component. Lancet. 1954;266:1055–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Lowell FC, Franklin W. A double-blind study of the effectiveness and specificity of injection therapy in ragweed hay fever. N Engl J Med. 1965;273:675–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Franklin W, Lowell FC. Comparison of two dosages of ragweed extract in the treatment of pollenosis. JAMA. 1967;201:915–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Varney VA, Gaga M, Frew AJ, et al. Usefulness of immunotherapy in patients with severe summer hay fever uncontrolled by antiallergic drugs. BMJ. 1991;302:265–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Walker SM, Pajno GB, Lima MT, et al. Grass pollen immunotherapy for seasonal rhinitis and asthma: a randomized, controlled trial. J Allergy Clin Immunol. 2001;107:87–93.CrossRefPubMedGoogle Scholar
  76. 76.
    Creticos PS, Reed CE, Norman PS, et al. Ragweed immunotherapy in adult asthma. N Engl J Med. 1996;334:501–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Calderon MA, Alves B, Jacobson M, et al. Allergen injection immunotherapy for seasonal allergic rhinitis. Cochrane Database Syst Rev. 2007;1:CD001936.Google Scholar
  78. 78.
    Norman PS, Lichtenstein LM. The clinical and immunologic specificity of immunotherapy. J Allergy Clin Immunol. 1978;61:370–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Nelson HS, Nolte H, Creticos P, et al. Efficacy and safety of timothy grass allergy immunotherapy tablet treatment in North American adults. J Allergy Clin Immunol. 2011;127:72–80.CrossRefPubMedGoogle Scholar
  80. 80.
    Durham SR, Emminger W, Kapp A, et al. Long-term clinical efficacy in grass pollen-induced rhinoconjunctivitis after treatment with SQ-standardized grass allergy immunotherapy tablet. J Allergy Clin Immunol. 2010;125:131–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Dahl R, Kapp A, Colombo G, et al. Sublingual grass allergen tablet immunotherapy provides sustained clinical benefit with progressive immunologic changes over 2 years. J Allergy Clin Immunol. 2008;121:512–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Dahl R, Kapp A, Colombo G, et al. Efficacy and safety of sublingual immunotherapy with grass allergen tablets for seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006;118:434–40.CrossRefPubMedGoogle Scholar
  83. 83.
    Radulovic S, Wilson D, Calderon M, Durham S. Systematic reviews of sublingual immunotherapy (SLIT). Allergy. 2011;66:740–52.CrossRefPubMedGoogle Scholar
  84. 84.
    Allam JP, Bieber T, Novak N. Dendritic cells as potential targets for mucosal immunotherapy. Curr Opin Allergy Clin Immunol. 2009;9:554–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Novak N, Allam JP. Mucosal dendritic cells in allergy and immunotherapy. Allergy. 2011;66:22–4.CrossRefPubMedGoogle Scholar
  86. 86.
    Novak N, Bieber T, Allam JP. Immunological mechanisms of sublingual allergen-specific immunotherapy. Allergy. 2011;66:733–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jae-Won Oh
    • 1
  1. 1.Division of Allergy and Clinical Immunology, Department of PediatricsHanyang University College of MedicineSeoulRepublic of Korea

Personalised recommendations