Optimal Containment of Epidemics in Temporal and Adaptive Networks

Chapter
Part of the Theoretical Biology book series (THBIO)

Abstract

In this chapter, we focus on the problem of containing the spread of diseases taking place on both temporal and adaptive networks (i.e., networks whose structure changes as a result of the epidemic). We specifically focus on the problem of finding the optimal allocation of containment resources (e.g., vaccines, medical personnel, traffic control resources, etc.) to eradicate epidemic outbreaks over the following three models of temporal and adaptive networks: (i) Markovian temporal networks, (ii) aggregated-Markovian temporal networks, and (iii) stochastically adaptive network models. For each model, we present a rigorous and tractable mathematical framework to efficiently find the optimal distribution of control resources to eliminate the disease. In contrast with other existing results, our results are not based on heuristic control strategies, but on a disciplined analysis using tools from dynamical systems and convex optimization.

References

  1. 1.
    Ahn, H.J., Hassibi, B.: Global dynamics of epidemic spread over complex networks. In: 52nd IEEE Conference on Decision and Control, pp. 4579–4585 (2013)Google Scholar
  2. 2.
    Antoniades, D., Dovrolis, C.: Co-evolutionary dynamics in social networks: a case study of Twitter. Comput. Soc. Netw. 2, 14 (2015)CrossRefGoogle Scholar
  3. 3.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Bell, D., Nicoll, A., Fukuda, K., Horby, P., Monto, A., Hayden, F., Wylks, C., Sanders, L., Van Tam, J.: Nonpharmaceutical interventions for pandemic influenza, national and community measures. Emerg. Infect. Dis. 12(1), 88–94 (2006)Google Scholar
  5. 5.
    Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control epidemics. Random Struct. Algoritm. 37(2), 204–222 (2010)MathSciNetMATHGoogle Scholar
  6. 6.
    Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Brewer, J.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cattuto, C., van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5(7), 1–9 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Preciado, V.M.: Optimal coinfection control of competitive epidemics in multi-layer networks. In: 53rd IEEE Conference on Decision and Control, pp. 6209–6214 (2014)Google Scholar
  11. 11.
    Chung, F., Horn, P., Tsiatas, A.: Distributing antidote using pagerank vectors. Internet Math. 6(2), 237–254 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-Markovian dynamic graphs. In: 27th ACM Symposium on Principles of Distributed Computing, pp. 213–222 (2008)Google Scholar
  13. 13.
    Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)CrossRefGoogle Scholar
  14. 14.
    Drakopoulos, K., Ozdaglar, A., Tsitsiklis, J.N.: An efficient curing policy for epidemics on graphs. IEEE Trans. Netw. Sci. Eng. 1(2), 67–75 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feller, W.: An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New York (1956)Google Scholar
  16. 16.
    Funk, S., Salathé, M., Jansen, V.A.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010)CrossRefGoogle Scholar
  17. 17.
    Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)CrossRefGoogle Scholar
  18. 18.
    Guo, D., Trajanovski, S., van de Bovenkamp, R., Wang, H., Van Mieghem, P.: Epidemic threshold and topological structure of susceptible-infectious-susceptible epidemics in adaptive networks. Phys. Rev. E 88, 042802 (2013)CrossRefGoogle Scholar
  19. 19.
    Hanson, F.B.: Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2007)CrossRefMATHGoogle Scholar
  20. 20.
    Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)CrossRefGoogle Scholar
  21. 21.
    Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)CrossRefGoogle Scholar
  22. 22.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  23. 23.
    Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabasi, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)CrossRefGoogle Scholar
  24. 24.
    Karsai, M., Perra, N., Vespignani, A.: Time varying networks and the weakness of strong ties. Sci. Rep. 4, 4001 (2014)CrossRefGoogle Scholar
  25. 25.
    Khanafer, A., Basar, T.: An optimal control problem over infected networks. In: 1st International Conference on Control, Dynamic Systems, and Robotics, 125 (2014)Google Scholar
  26. 26.
    Khouzani, M. H. R., Sarkar, S., Altman, E.: Optimal control of epidemic evolution. In: 2011 IEEE International Conference on Computer Communications, pp. 1683–1691 (2011)Google Scholar
  27. 27.
    Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28(1976), 221–236 (1976)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Liu, S., Perra, N., Karsai, M., Vespignani, A.: Controlling contagion processes in activity driven networks. Phys. Rev. Lett. 112, 118702 (2014)CrossRefGoogle Scholar
  29. 29.
    Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000prime Rep. 5, 6 (2013)Google Scholar
  30. 30.
    Masuda, N., Klemm, K., Eguíluz, V.M.: Temporal networks: slowing down diffusion by long lasting interactions. Phys. Rev. Lett. 111, 188701 (2013)CrossRefGoogle Scholar
  31. 31.
    Newman, M., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)MATHGoogle Scholar
  32. 32.
    Nowzari, C., Ogura, M., Preciado, V.M., Pappas, G.J.: A general class of spreading processes with non-Markovian dynamics. In: 54th IEEE Conference on Decision and Control, pp. 5073–5078 (2015)Google Scholar
  33. 33.
    Nowzari, C., Ogura, M., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for containing epidemics on time-varying networks. In: 49th Asilomar Conference on Signals, Systems and Computers, pp. 1333–1337 (2015)Google Scholar
  34. 34.
    Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36(1), 26–46 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nowzari, C., Preciado, V.M., Pappas, G.J.: Stability analysis of generalized epidemic models over directed networks. In: 53rd IEEE Conference on Decision and Control, pp. 6197–6202 (2014)Google Scholar
  36. 36.
    Ogura, M., Martin, C.F.: Stability analysis of positive semi-Markovian jump linear systems with state resets. SIAM J. Control. Optim. 52, 1809–1831 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Ogura, M., Preciado, V.M.: Optimal design of switched networks of positive linear systems via geometric programming. IEEE Trans. Control Netw. Syst. (accepted) (2015)Google Scholar
  38. 38.
    Ogura, M., Preciado, V.M.: Efficient containment of exact SIR Markovian processes on networks. In: 55th IEEE Conference on Decision and Control, pp. 967–972 (2016)Google Scholar
  39. 39.
    Ogura, M., Preciado, V.M.: Epidemic processes over adaptive state-dependent networks. Phys. Rev. E 93, 062316 (2016)CrossRefGoogle Scholar
  40. 40.
    Ogura, M., Preciado, V.M.: Optimal design of networks of positive linear systems under stochastic uncertainty. In: 2016 American Control Conference, pp. 2930–2935 (2016)Google Scholar
  41. 41.
    Ogura, M., Preciado, V.M.: Stability of spreading processes over time-varying large-scale networks. IEEE Trans. Netw. Sci. Eng. 3(1), 44–57 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012)CrossRefGoogle Scholar
  44. 44.
    Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks. In: 52nd IEEE Conference on Decision and Control, pp. 7486–7491 (2013)Google Scholar
  45. 45.
    Preciado, V.M., Sahneh, F.D., Scoglio, C.: A convex framework for optimal investment on disease awareness in social networks. In: 2013 Global Conference on Signal and Information Processing, pp. 851–854 (2013)Google Scholar
  46. 46.
    Preciado, V.M., Jadbabaie, A.: Spectral analysis of virus spreading in random geometric networks. In: 48th IEEE Conference on Decision and Control, pp. 4802–4807 (2009)Google Scholar
  47. 47.
    Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource allocation for network protection against spreading processes. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Ramirez-Llanos, E., Martinez, S.: Distributed and robust fair resource allocation applied to virus spread minimization. In: 2015 American Control Conference, pp. 1065–1070 (2015)Google Scholar
  49. 49.
    Rocha, L.E.C., Blondel, V.D.: Bursts of vertex activation and epidemics in evolving networks. PLoS Comput. Biol. 9(3), e1002974 (2013)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Rogers, T., Clifford-Brown, W., Mills, C., Galla, T.: Stochastic oscillations of adaptive networks: application to epidemic modelling. J. Stat. Mech: Theory Exp. 2012(08), P08018 (2012)CrossRefGoogle Scholar
  51. 51.
    Schaper, W., Scholz, D.: Factors regulating arteriogenesis. Arterioscler. Thromb. Vasc. Biol. 23(7), 1143–1151 (2003)CrossRefGoogle Scholar
  52. 52.
    Schwarzkopf, Y., Rákos, A., Mukamel, D.: Epidemic spreading in evolving networks. Phys. Rev. E 82, 036112 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Scirè, A., Tuval, I., Eguíluz, V.M.: Dynamic modeling of the electric transportation network. Europhys. Lett. 71(2), 318–324 (2005)CrossRefGoogle Scholar
  54. 54.
    Sélley, F., Besenyei, Á., Kiss, I.Z., Simon, P.L.: Dynamic control of modern, network-based epidemic models. SIAM J. Appl. Dyn. Syst. 14(1), 168–187 (2015)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8), e23176 (2011)CrossRefGoogle Scholar
  56. 56.
    Szabó-Solticzky, A., Berthouze, L., Kiss, I.Z., Simon, P.L.: Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis. J. Math. Biol. 72(5), 1153–1176 (2016)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Taylor, M., Taylor, T.J., Kiss, I.Z.: Epidemic threshold and control in a dynamic network. Phys. Rev. E 85, 016103 (2012)CrossRefGoogle Scholar
  58. 58.
    Torres, J.A., Roy, S., Wan, Y.: Sparse allocation of resources in dynamical networks with application to spread control. In: 2015 American Control Conference, pp. 1873–1878 (2015)Google Scholar
  59. 59.
    Trajanovski, S., Hayel, Y., Altman, E., Wang, H., Van Mieghem, P.: Decentralized protection strategies against SIS epidemics in networks. IEEE Trans. Control Netw. Syst. 2(4), 406–419 (2015)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Tunc, I., Shaw, L.B.: Effects of community structure on epidemic spread in an adaptive network. Phys. Rev. E 90, 022801 (2014)CrossRefGoogle Scholar
  61. 61.
    Valdez, L.D., Macri, P.A., Braunstein, L.A.: Intermittent social distancing strategy for epidemic control. Phys. Rev. E 85, 036108 (2012)CrossRefGoogle Scholar
  62. 62.
    Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)CrossRefGoogle Scholar
  63. 63.
    Vazquez, A., Rácz, B., Lukács, A., Barabasi, A.L.: Impact of non-Poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)CrossRefGoogle Scholar
  64. 64.
    Vestergaard, C.L., Génois, M., Barrat, A.: How memory generates heterogeneous dynamics in temporal networks. Phys. Rev. E 90, 042805 (2014)CrossRefGoogle Scholar
  65. 65.
    Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6(32), 233–241 (2009)CrossRefGoogle Scholar
  66. 66.
    Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Wan, Y., Roy, S., Saberi, A.: Designing spatially heterogeneous strategies for control of virus spread. IET Syst. Biol. 2(4), 184–201 (2008)CrossRefGoogle Scholar
  68. 68.
    Wang, B., Cao, L., Suzuki, H., Aihara, K.: Epidemic spread in adaptive networks with multitype agents. J. Phys. A Math. Theor. 44(3), 035101 (2011)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competitive spreading processes on bilayer networks. IEEE Trans. Control Netw. Syst. (accepted) (2016)Google Scholar
  70. 70.
    Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competing epidemics over arbitrary networks. In: 2015 American Control Conference, pp. 1381–1386 (2015)Google Scholar
  71. 71.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefMATHGoogle Scholar
  72. 72.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Nara Institute of Science and TechnologyIkomaJapan
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations