Introduction to Temporal Network Epidemiology

  • Naoki MasudaEmail author
  • Petter Holme
Part of the Theoretical Biology book series (THBIO)


In this introductory chapter, we start by briefly summarising temporal and adaptive networks, and epidemic process models frequently used in this volume. Then, we introduce a couple of what we think are key studies in the field, which are fundamental for various chapters in this volume. Finally, we give an overview of each chapter and discuss future work.



NM acknowledges the support provided through JST, ERATO, Kawarabayashi Large Graph Project and JST, CREST.


  1. 1.
    Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)CrossRefGoogle Scholar
  4. 4.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRefGoogle Scholar
  5. 5.
    Dietz, K.: On the transmission dynamics of HIV. Math. Biosci. 90, 397–414 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671–1681 (2006)CrossRefGoogle Scholar
  7. 7.
    Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008)CrossRefGoogle Scholar
  8. 8.
    Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)CrossRefGoogle Scholar
  9. 9.
    Gross, T., Sayama, H. (eds.): Adaptive Networks. Springer, Berlin (2009)zbMATHGoogle Scholar
  10. 10.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Holme, P.: Model versions and fast algorithms for network epidemiology. J. Logist. Eng. Univ. 30, 1–7 (2014)Google Scholar
  12. 12.
    Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)CrossRefGoogle Scholar
  13. 13.
    Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)CrossRefGoogle Scholar
  14. 14.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRefGoogle Scholar
  15. 15.
    Holme, P., Saramäki, J.: Temporal Networks. Springer, Berlin (2013)CrossRefGoogle Scholar
  16. 16.
    Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102(R) (2011)Google Scholar
  17. 17.
    Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)CrossRefGoogle Scholar
  18. 18.
    Kelso, J.K., Milne, G.J., Kelly, H.: Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. BMC Public Health 9, 117 (2009)CrossRefGoogle Scholar
  19. 19.
    Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Pop. Biol. 60, 59–71 (2001)CrossRefGoogle Scholar
  21. 21.
    Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)Google Scholar
  22. 22.
    Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)CrossRefzbMATHGoogle Scholar
  23. 23.
    Newman, M.E.J.: Networks–An Introduction. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Reluga, T.C.: Game theory of social distancing in response to an epidemic. PLoS Comput. Biol. 6, e1000793 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)CrossRefGoogle Scholar
  27. 27.
    Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)CrossRefGoogle Scholar
  28. 28.
    Sayama, H., Pestov, I., Schmidt, J., Bush, B.J., Wong, C., Yamanoi, J., Gross, T.: Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011)CrossRefGoogle Scholar
  30. 30.
    Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110, 168701 (2013)CrossRefGoogle Scholar
  31. 31.
    Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015)Google Scholar
  32. 32.
    Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11, e1004579 (2015)CrossRefGoogle Scholar
  33. 33.
    Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B 274, 2925–2933 (2007)CrossRefGoogle Scholar
  34. 34.
    Volz, E., Meyers, L.A.: Epidemic thresholds in dynamic contact networks. J. R. Soc. Interface 6, 233–241 (2009)CrossRefGoogle Scholar
  35. 35.
    Watts, C.H., May, R.M.: The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math. Biosci. 108, 89–104 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Engineering MathematicsUniversity of BristolClifton, BristolUK
  2. 2.Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations