Advertisement

Autophagy and Bacterial Pathogenesis: An Interactive Overview

  • Madhu PuriEmail author
  • Trinad Chakraborty
  • Helena Pillich
Chapter

Abstract

Autophagy is a cellular homeostasis-essential mechanism in which damaged organelles, protein aggregates, or pathogens are enclosed in double-membraned autophagosomes and are subsequently degraded by lysosomal enzymes. Autophagic control of bacterial replication promotes bacterial clearance during infection. However, several pathogenic bacteria have devised strategies to escape/inhibit autophagy, so as to enable their growth. This review discusses the role of autophagy in the pathogenesis of some intracellular bacteria: recent mechanisms by which bacteria are targeted by autophagy and also the strategies employed by bacteria to counter autophagy.

Keywords

Autophagy Intracellular bacteria Pathogenesis 

Notes

Acknowledgments

This work was funded by the Bundesministerium für Bildung und Forschung (ERA-NET PathoGenoMics LISTRESS and Infect-ERA PROANTILIS to T.C.) and by the Deutsche Forschungsgemeinschaft (SFB-TR84, project A04 to T.C.).

References

  1. Agarwal V, Hammerschmidt S (2009) Cdc42 and the phosphatidylinositol3-kinase-Akt pathway are essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells. J Biol Chem 284(29):19427–19436. doi: 10.1074/jbc.M109.003442 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355CrossRefGoogle Scholar
  3. Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7(6):765–778CrossRefGoogle Scholar
  4. Anand PK, Tait SW, Lamkanfi M, Amer AO, Nunez G, Pagès G, Pouysségur J et al (2011) TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J BiolChem 286(50):42981–42991Google Scholar
  5. Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, Davies MR, Schulz BL, Nizet V, Teasdale RD (2013) Walker MJ 2013 the globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14(6):675–682. doi: 10.1016/j.chom.2013.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baxt LA, Goldberg MB (2014) Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One 9(4):e94653. doi: 10.1371/journal.pone.0094653.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  7. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J BiolChem 281(16):11374–11383Google Scholar
  8. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451(7176):350–354CrossRefGoogle Scholar
  9. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614CrossRefGoogle Scholar
  10. Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 32(4):397–413CrossRefGoogle Scholar
  11. Campbell GR, Spector SA (2012) Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog 8(5):e1002689. doi: 10.1371/journal.ppat.1002689.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S et al (2012) Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A 109(46):E3168–E3176. doi: 10.1073/pnas.1210500109. Epub 2012 Oct 23CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cemma M, Kim PK, Brumell JH (2011) The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7(3):341–345CrossRefGoogle Scholar
  14. Chan EY (2012) Regulation and function of uncoordinated-51 like kinase proteins. Antioxid Redox Signal 17(95):775–785CrossRefGoogle Scholar
  15. Chandra P, Ghanwat S, Matta SK, Yadav SS, Mehta M, Siddiqui Z et al (2015a) Mycobacterium tuberculosis inhibits RAB7 recruitment to selectively modulate autophagy flux in macrophages. Sci Rep 5:16320. doi: 10.1038/srep16320 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chandra V, Bhagyaraj E, Nanduri R, Ahuja N, Gupta P (2015b) NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy. Autophagy 11(11):1987–1997CrossRefGoogle Scholar
  17. Chang SY, Lee SN, Yang JY, Kim DW, Yoon JH, Ko HJ et al (2013) Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model. PLoS One 8(11):e81095. doi: 10.1371/journal.pone.0081095.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen Z, Wang T, Liu Z, Zhang G, Wang J, Feng S et al (2015) Inhibition of autophagy by miR-30A induced by Mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Jpn J Infect Dis 68(5):420–424. doi: 10.7883/yoken.JJID.2014.466.Epub CrossRefPubMedGoogle Scholar
  19. Chew TS, O’Shea NR, Sewell GW, Oehlers SH, Mulvey CM, Crosier PS et al (2015) Optineurin deficiency in mice contributes to impaired cytokine secretion and neutrophil recruitment in bacteria-driven colitis. Dis Model Mech 8(8):817–829CrossRefGoogle Scholar
  20. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338(6110):1072–1076. doi: 10.1126/science.1227026.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  21. deReuck AVS, Cameron MP (1963) Ciba foundation symposium on lysosomes. JA Churchill Ltd, LondonCrossRefGoogle Scholar
  22. Di Bartolomeo S, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191(1):155–168CrossRefGoogle Scholar
  23. Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P (2011) Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathogens 7(8):e1002168CrossRefGoogle Scholar
  24. Duan L, Yi M, Chen J, Li S, Chen W (2016) Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem Biophys Res Commun 473(4):1229–1234. doi: 10.1016/j.bbrc.2016.04.045.Epub CrossRefPubMedGoogle Scholar
  25. Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149CrossRefGoogle Scholar
  26. Fujita N, Itoh H, Omori H et al (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5):2092–2100CrossRefGoogle Scholar
  27. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12CrossRefGoogle Scholar
  28. Goto A, Yano T, Terashima J, Iwashita S, Oshima Y, Kurata S (2010) Cooperative regulation of the induction of the novel antibacterial listericin by peptidoglycan recognition protein LE and the JAK-STAT pathway. J Biol Chem 285(21):15731–15738CrossRefGoogle Scholar
  29. Gradstedt H, Iovino F, Bijlsma JJ (2013) Streptococcus pneumoniae invades endothelial host cells via multiple pathways and is killed in a lysosome dependent manner. PLoS One 8(6):e65626. doi: 10.1371/journal.pone.0065626 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766CrossRefGoogle Scholar
  31. Hanada T, Noda NN, Satomi Y et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302CrossRefGoogle Scholar
  32. Haobam B, Nozawa T, Minowa-Nozawa A, Tanaka M, Oda S, Watanabe T et al (2014) Rab17-mediated recycling endosomes contribute to autophagosome formation in response to Group A Streptococcus invasion. Cell Micorbiol1 6(12):1806–1821. doi: 10.1111/cmi.12329.Epub CrossRefGoogle Scholar
  33. Henriques-Normark B, Tuomanen EI (2013) The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 3(7):pii: a010215. doi: 10.1101/cshperspect.a010215 CrossRefGoogle Scholar
  34. Hernandez LD, Pypaert M, Flavell RA, Galán JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163(5):1123–1131CrossRefGoogle Scholar
  35. Holden DW (2002) Trafficking of the Salmonella vacuole in macrophages. Traffic 3(3):161–169CrossRefGoogle Scholar
  36. Horenkamp FA, Kaufmann KJ, Kohler LJ, Sherwood RK, Krueger KP, Shteyn V et al (2015) The Legionella anti-autophagy effector RavZ targets the autophagosome via PI3P- and curvature-sensing motifs. Dev Cell 34(5):569–576. doi: 10.1016/j.devcel.2015.08.010.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang D, Bao L (2014) Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J Microbiol Immunol Infect 49:859–865. doi: 10.1016/j.jmii.2014.11.008. pii: S1684–1182(14)00238–2CrossRefPubMedGoogle Scholar
  38. Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KV (2016) Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep 6:23089. doi: 10.1038/srep23089 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C et al (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A 106(34):14564–14569. doi: 10.1073/pnas.0813319106. Epub 2009 Aug 10CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adaptor proteins. Autophagy 7(3):279–296CrossRefGoogle Scholar
  41. Kayath CA, Hussey S, El Hajjami N, Nagra K, Philpott D, Allaoui A (2010) Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes Infect 12(12–13):956–966. doi: 10.1016/j.micinf.2010.06.006.Epub CrossRefPubMedGoogle Scholar
  42. Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43(5):1333–1344CrossRefGoogle Scholar
  43. Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS et al (2012) Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11(5):457–468. doi: 10.1016/j.chom.2012.03.008 CrossRefPubMedGoogle Scholar
  44. Kim JK, Yuk JM, Kim SY, Kim TS, Jin HS, Yang CS et al (2015) MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J Immunol 194(11):5355–5365. doi: 10.4049/jimmunol.1402557.Epub CrossRefPubMedGoogle Scholar
  45. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516CrossRefGoogle Scholar
  46. Lam KK, Zheng X, Forestieri R, Balgi AD, Nodwell M, Vollett S et al (2012) Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoSPathog 8(5):e1002691. doi: 10.1371/journal.ppat.1002691.Epub CrossRefGoogle Scholar
  47. Lam GY, Cemma M, Muise AM, Higgins DE, Brumell JH (2013) Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection. Autophagy 9(7):985–995CrossRefGoogle Scholar
  48. Li P, Shi J, He Q, Hu Q, Wang YY, Zhang LJ, Chan WT, Chen WX (2015) Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS One 10(3):e0122753. doi: 10.1371/journal.pone.0122753. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lin L, Baehrecke EH (2015) Autophagy, cell death, and cancer. Mol Cell Oncol 2(3):e985913. doi: 10.4161/23723556.2014.985913 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lu K, Psakhye I, Jentsch S (2014) A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance. Autophagy 10(12):2381–2382CrossRefGoogle Scholar
  51. Lu SL, Kuo CF, Chen HW, Yang YS, Liu CC, Anderson R (2015) Insufficient acidification of autophagosomes facilitates group A streptococcus survival and growth in endothelial cells. MBio 6(5):e01435–e01415. doi: 10.1128/mBio.01435-15 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Matsuda F, Fujii J, Yoshida S (2009) Autophagy induced by 2-deoxy-D-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy 5(4):484–493CrossRefGoogle Scholar
  53. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132CrossRefGoogle Scholar
  54. Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M et al (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8(5):433–444. doi: 10.1016/j.chom.2010.10.009 CrossRefPubMedGoogle Scholar
  55. Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J BiolChem 286(30):26987–26995Google Scholar
  56. Moy RH, Cherry S (2013) Antimicrobial autophagy: a conserved innate immune response in Drosophila. J Innate Immun 5(5):444–455CrossRefGoogle Scholar
  57. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306(5698):1037–1040CrossRefGoogle Scholar
  58. Newman AC, Scholefield CL, Kemp AJ, Newman M, McIver EG, Kamal A, Wilkinson S (2012) TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signaling. PLoS One 7(11):e50672CrossRefGoogle Scholar
  59. Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I (2012) The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol1 4(8):1149–1165. doi: 10.1111/j.1462-5822.2012.01792.x.Epub CrossRefGoogle Scholar
  60. O’Seaghdha M, Wessels MR (2013) Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing. PLoS Pathog 9(6):e1003394. doi: 10.1371/journal.ppat.1003394.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–731. Epub 2004 Dec 2CrossRefGoogle Scholar
  62. Ogawa M, Yoshikawa Y, Mimuro H, Hain T, Chakraborty T, Sasakawa C (2011) Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure. Autophagy 7(3):310–314CrossRefGoogle Scholar
  63. Osawa T, Mizuno Y, Fujita Y, Takatama M, Nakazato Y, Okamoto K (2011) Optineurin in neurodegenerative diseases. Neuropathology 31(6):569–574CrossRefGoogle Scholar
  64. Otto GP, Wu MY, Clarke M, Lu H, Anderson OR, Hilbi H et al (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51(1):63–72CrossRefGoogle Scholar
  65. Owen KA, Meyer CB, Bouton AH, Casanova JE (2014) Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages. PLoS Pathog 10(6):e1004159. doi: 10.1371/journal.ppat.1004159. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37(2):223–234CrossRefGoogle Scholar
  67. Proikas-Cezanne T, Takacs Z, Dönnes P et al (2015) WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128(2):207–217CrossRefGoogle Scholar
  68. Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3(2):117–125CrossRefGoogle Scholar
  69. Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5(7):455–468CrossRefGoogle Scholar
  70. Rolando M, Escoll P, Nora T, Botti J, Boitez V, Bedia C et al (2016) Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A 113(7):1901–1906. doi: 10.1073/pnas.1522067113.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  71. Russell RC, Tian Y, Yuan H et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–750CrossRefGoogle Scholar
  72. Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N et al (2010) Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 285(29):22666–22675. doi: 10.1074/jbc.M109.100131.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sanjurjo L, Amézaga N, Vilaplana C, Cáceres N, Marzo E, Valeri M et al (2013) The scavenger protein apoptosis inhibitor of macrophages (AIM) potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy. PLoS one 8(11):e79670. doi: 10.1371/journal.pone.0079670. eCollection 2013CrossRefPubMedPubMedCentralGoogle Scholar
  74. Seto S, Tsujimura K, Koide Y (2012) Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol 14(5):710–727CrossRefGoogle Scholar
  75. Shahnazari S, Yen WL, Birmingham CS, Shiu J, Namolovan A, Zheng YT et al (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8(2):137–146CrossRefGoogle Scholar
  76. Sharma G, Dutta RK, Khan MA, Ishaq M, Sharma K, Malhotra H (2014) IL-27 inhibits IFN-γ induced autophagy by concomitant induction of JAK/PI3K/Akt/mTOR cascade and up-regulation of mcl-1 in mycobacterium tuberculosis H37Rv infected macrophages.Int. J Biochem Cell Biol 55(October):335–347. doi: 10.1016/j.biocel.2014.08.022. Epub 2014 Sep 4CrossRefGoogle Scholar
  77. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L et al (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494(7436):201–206. doi: 10.1038/nature11866.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sirianni A, Krokowski S, Lobato-Márquez D, Buranyi S, Pfanzelter J, Galea D et al (2016) Mitochondria mediate septin cage assembly to promote autophagy of Shigella. EMBO Rep 17(7):1029–1043. pii: e201541832CrossRefGoogle Scholar
  79. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3(8):e111CrossRefGoogle Scholar
  80. Swanson MS, Isberg RR (1995) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63(9):3609–3620PubMedPubMedCentralGoogle Scholar
  81. Tai SS (2016) Streptococcus pneumoniae serotype distribution and pneumococcal conjugate vaccine serotype coverage among pediatric patients in East and Southeast Asia, 2000-2014: a pooled data analysis. Vaccines (Basel) 4(1):pii: E4. doi: 10.3390/vaccines4010004 CrossRefGoogle Scholar
  82. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, Yang C, Emili A, Philpott DJ, Girardin SE (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11(6):563–575CrossRefGoogle Scholar
  83. Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE (2013) Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J 32(23):3066–3078CrossRefGoogle Scholar
  84. Thomas M, Mesquita FS, Holden DW (2012) The DUB-ious lack of ALIS in Salmonella infection: a Salmonella deubiquitinase regulates the autophagy of protein aggregates. Autophagy 8(12):1824–1826CrossRefGoogle Scholar
  85. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10(11):1215–1221CrossRefGoogle Scholar
  86. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385):414–418CrossRefGoogle Scholar
  87. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174CrossRefGoogle Scholar
  88. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F (2015) The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella Typhimurium by Autophagy. PLoS Pathog 11(10):e1005174. doi: 10.1371/journal.ppat.1005174. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14(3):584–640CrossRefGoogle Scholar
  90. Verlhac P, Viret C, Faure M (2015) Dual function of CALCOCO2/NDP52 during xenophagy. Autophagy 11(6):965–966. doi: 10.1080/15548627.2015.1046672 CrossRefPubMedPubMedCentralGoogle Scholar
  91. von Muhlinen N, Thurston T, Rhyzhakov G, Bloor S, Randow F (2010) NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy 6(2):288–289. Epub 2010 Feb 4CrossRefGoogle Scholar
  92. Wang J, Yang K, Zhou L, Minhaowu L, Wu Y, Zhu M et al (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathogens 9(10):e1003697. doi: 10.1371/journal.ppat.1003697. Epub 2013 Oct 10CrossRefPubMedPubMedCentralGoogle Scholar
  93. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150(4):803–815. doi: 10.1016/j.cell.2012.06.040 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17(6):811–819. doi: 10.1016/j.chom.2015.05.004. Epub 2015 Jun 2CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333(6039):228–233CrossRefGoogle Scholar
  96. Yamaguchi H, Nakagawa I, Yamamoto A, Amano A, Noda T, Yoshimori T (2009) An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog 5(11):e1000670. doi: 10.1371/journal.ppat.1000670.Epub CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H et al (2008) Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9(8):908–916CrossRefGoogle Scholar
  98. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H et al (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11(10):1233–1240CrossRefGoogle Scholar
  99. Yu HB, Croxen MA, Marchiando AM, Ferreira RB, Cadwell K, Foster LJ et al (2014) Autophagy facilitates Salmonella replication in HeLa cells. MBio 5(2):e00865–e00814. doi: 10.1128/mBio.00865-14 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol (Baltimore:1950) 183(9):5909–5916Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Madhu Puri
    • 1
    Email author
  • Trinad Chakraborty
    • 1
  • Helena Pillich
    • 1
  1. 1.Institute of Medical MicrobiologyJustus-Liebig UniversityGiessenGermany

Personalised recommendations