Advertisement

Bacterial Polyhydroxyalkanoates: Recent Trends in Production and Applications

  • Aneesh Balakrishna Pillai
  • Hari Krishnan Kumarapillai
Chapter

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers accumulated in microorganisms as intracellular carbon and energy reserve, which are utilized when the external carbon supply is limited. PHAs have gained popularity as ‘green polymers’ which can be a substitute for petroleum-derived plastics due to their plastic-like properties, possibility to produce from renewable resources, and complete biodegradability in environment. The high production cost is the main hindrance to the wide spread use of these materials. Research is progressing with an aim to produce PHAs from cheap and easily available carbon sources and from waste materials and thereby make them economically competitive with conventional plastics. This review is focused on recent advances in the field of bacterial production of polyhydroxyalkanoates and their applications.

Keywords

Biopolymers Polyhydroxyalkanoates Poly-3-hydroxybutyrate PHA biosynthesis PHA copolymers Bacterial fermentation 

Notes

Acknowledgements

The authors are grateful to Prof. M. Radhakrishna Pillai, Director, RGCB, for the facilities provided. We acknowledge the financial support from Department of Biotechnology, Govt. of India, and Council of Scientific and Industrial Research (CSIR), India (SRF; 09/716(0149)/2012-EMR-I).

References

  1. Agnew DE, Stevermer AK, Youngquist JT et al (2012) Engineering Escherichia coli for production of C 12–C 14 polyhydroxyalkanoate from glucose. Metab Eng 14(6):705–713PubMedCrossRefGoogle Scholar
  2. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743CrossRefGoogle Scholar
  3. Akaraonye E, Moreno C, Knowles JC et al (2012) Poly (3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 7(2):293–303PubMedCrossRefGoogle Scholar
  4. Aldor IS, Kim S-W, Prather KLJ et al (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol 68(8):3848–3854PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alsafadi D, Al-Mashaqbeh O (2016) A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol. doi: http://dx.doi.org/10.1016/j.nbt.2016.05.003 CrossRefPubMedGoogle Scholar
  6. Amache R, Sukan A, Safari M et al (2013) Advances in PHAs production. Chem Eng 32. doi: 10.3303/CET1332156
  7. Amara AA, Bernd H (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 374(2):413–421PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amos DA, McInerney MJ (1993) Formation of D-3-hydroxybutyryl-coenzyme A by an acetoacetyl-coenzyme A reductase in Syntrophomonas wolfei subsp. wolfei. Arch Microbiol 159(1):16–20CrossRefGoogle Scholar
  9. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472PubMedPubMedCentralGoogle Scholar
  10. Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly (hydroxyalkanoates). Int J Biol Macromol 12(2):102–105PubMedCrossRefGoogle Scholar
  11. Andreeßen B, Lange AB, Robenek H et al (2010) Conversion of glycerol to poly (3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76(2):622–626PubMedCrossRefGoogle Scholar
  12. Arifin Y, Sabri S, Sugiarto H et al (2011) Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxybutyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 156(4):275–278PubMedCrossRefGoogle Scholar
  13. Aziz NA, Sipaut CS, Abdullah AAA (2012) Improvement of the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. J Chem Technol Biotechnol 87(11):1607–1614CrossRefGoogle Scholar
  14. Bhattacharyya A, Pramanik A, Maji SK et al (2012) Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2(34):189. doi: 10.1186/2191-0855-2-34 CrossRefGoogle Scholar
  15. Bian Y-Z, Wang Y, Aibaidoula G et al (2009) Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30(2):217–225PubMedCrossRefGoogle Scholar
  16. Brzostowicz P, Blasko M, Rouvière P (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58(6):781–789PubMedCrossRefGoogle Scholar
  17. Budde CF, Mahan AE, Lu J et al (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192(20):5319–5328PubMedPubMedCentralCrossRefGoogle Scholar
  18. Canadas RF, Cavalheiro JM, Guerreiro JD et al (2014) Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int J Biol Macromol 71:131–140PubMedCrossRefGoogle Scholar
  19. Castilho LR, Mitchell DA, Freire DM (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100(23):5996–6009PubMedCrossRefGoogle Scholar
  20. Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria natural functions and applications. Springer, Berlin Heidelberg, pp 17–37CrossRefGoogle Scholar
  21. Chen G-Q, Hajnal I (2015) The ‘PHAome’. Trends Biotechnol 33(10):559–564PubMedCrossRefGoogle Scholar
  22. Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomater 8(2):540–548PubMedCrossRefGoogle Scholar
  23. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578PubMedCrossRefGoogle Scholar
  24. Chen Q, Wang Q, Wei G et al (2011) Production in Escherichia coli of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol 77(14):4886–4893PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen B-Y, Hung J-Y, Shiau T-J et al (2013) Exploring two-stage fermentation strategy of polyhydroxyalkanoate production using Aeromonas hydrophila. Biochem Eng J 78:80–84CrossRefGoogle Scholar
  26. Chen G-Q, Hajnal I, Wu H et al (2015a) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33(10):565–574PubMedCrossRefGoogle Scholar
  27. Chen Z, Huang L, Wen Q et al (2015b) Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 209:68–75PubMedCrossRefGoogle Scholar
  28. Chien C-C, Hong C-C, Soo P-C et al (2010) Functional expression of phaCAB genes from Cupriavidus taiwanensis strain 184 in Escherichia coli for polyhydroxybutyrate production. Appl Biochem Biotechnol 162(8):2355–2364PubMedCrossRefGoogle Scholar
  29. Chohan SN, Copeland L (1998) Acetoacetyl coenzyme A reductase and polyhydroxybutyrate synthesis in Rhizobium (Cicer) sp. strain CC 1192. Appl Environ Microbiol 64(8):2859–2863PubMedPubMedCentralGoogle Scholar
  30. Choi MH, Yoon SC, Lenz RW (1999) Production of poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly (4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 65(4):1570–1577PubMedPubMedCentralGoogle Scholar
  31. Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC Press, Boca RatonGoogle Scholar
  32. Cobntbekt J, Mabchessault R (1972) Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J Mol Biol 71(3):735–756CrossRefGoogle Scholar
  33. Cui B, Huang S, Xu F et al (2015) Improved productivity of poly (3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 99(14):6009–6019PubMedCrossRefGoogle Scholar
  34. Dai Z-W, Zou X-H, Chen G-Q (2009) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30(17):3075–3083PubMedCrossRefGoogle Scholar
  35. Davis R, Kataria R, Cerrone F et al (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209PubMedCrossRefGoogle Scholar
  36. Dawes EA, Senior PJ (1972) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266CrossRefGoogle Scholar
  37. de Almeida A, Giordano AM, Nikel PI et al (2010) Effects of aeration on the synthesis of poly (3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76(6):2036–2040PubMedPubMedCentralCrossRefGoogle Scholar
  38. Doi Y, Tamaki A, Kunioka M et al (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotechnol 28(4–5):330–334CrossRefGoogle Scholar
  39. Dong CL, Webb WR, Peng Q et al (2015) Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. J Biomed Mater Res A 103(1):282–288PubMedCrossRefGoogle Scholar
  40. Erdal E, Kavaz D, Şam M et al (2012) Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J Biomed Nanotechnol 8(5):800–808PubMedCrossRefGoogle Scholar
  41. Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 9(2–4):231–235PubMedCrossRefGoogle Scholar
  42. Fiedler S, Steinbüchel A, Rehm BH (2000) PhaG-mediated synthesis of poly (3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66(5):2117–2124PubMedPubMedCentralCrossRefGoogle Scholar
  43. Follonier S, Henes B, Panke S et al (2012) Putting cells under pressure: a simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol Bioeng 109(2):451–461PubMedCrossRefGoogle Scholar
  44. Francis L, Meng D, Knowles J et al (2011) Controlled delivery of gentamicin using poly (3-hydroxybutyrate) microspheres. Int J Mol Sci 12(7):4294–4314PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fu N, Deng S, Fu Y et al (2014) Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Prolif 47(5):465–475PubMedCrossRefGoogle Scholar
  46. Fu J, Sharma P, Spicer V et al (2015) Quantitative ‘Omics analyses of medium chain length polyhydroxyalkanaote metabolism in Pseudomonas putida LS46 cultured with waste glycerol and waste fatty acids. PLoS One 10 (11):e0142322. doi:http://dx.doi.org/10.1371/journal.pone.0142322CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fukui T, Ito M, Saito T et al (1987) Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Biochim Biophys Acta Biochim Biophys Acta 917(3):365–371PubMedGoogle Scholar
  48. Gahlawat G, Srivastava AK (2012) Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Appl Biochem Biotechnol 168(5):1051–1064PubMedCrossRefGoogle Scholar
  49. Gao D, Maehara A, Yamane T et al (2001) Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiol Lett 196(2):159–164PubMedCrossRefGoogle Scholar
  50. Gao X, Yuan X-X, Shi Z-Y et al (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb Cell Factories 11(1):1–10. doi: 10.1186/1475-2859-11-130 CrossRefGoogle Scholar
  51. García A, Segura D, Espín G et al (2014) High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 82:117–123CrossRefGoogle Scholar
  52. Griebel R, Smith Z, Merrick J (1968) Metabolism of poly (β-hydroxybutyrate). I. Purification, composition, and properties of native poly (β-hydroxybutyrate) granules from Bacillus megaterium. Biochemistry 7(10):3676–3681PubMedCrossRefGoogle Scholar
  53. Grothe E, Chisti Y (2000) Poly (β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Eng 22(5):441–449CrossRefGoogle Scholar
  54. Gumel A, Annuar M, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605CrossRefGoogle Scholar
  55. Ha C-S, Cho W-J (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27(4):759–809CrossRefGoogle Scholar
  56. Hahn SK, Chang YK, Lee SY (1995) Recovery and characterization of poly (3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli. Appl Environ Microbiol 61(1):34–39PubMedPubMedCentralGoogle Scholar
  57. Haywood G, Anderson A, Dawes E (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57(1):1–6CrossRefGoogle Scholar
  58. Hocking PJ, Marchessault RH (1994) Biopolyesters. In: Griffin GJ (ed) Chemistry and technology of biodegradable polymers. Blackie academic & professional, London, pp 48–96CrossRefGoogle Scholar
  59. Hoffmann N, Steinbüchel A, Rehm BH (2000) The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 184(2):253–259PubMedCrossRefGoogle Scholar
  60. Hoffmann N, Amara AA, Beermann BB et al (2002) Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP: CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem 277(45):42926–42936PubMedCrossRefGoogle Scholar
  61. Holmes P (1988) Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers. In: Developments in crystalline polymers. Springer, Dordrecht, pp 1–65Google Scholar
  62. Horng YT, Chang KC, Chien CC et al (2010) Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose PBAD promoter in Escherichia coli. Lett Appl Microbiol 50(2):158–167PubMedCrossRefGoogle Scholar
  63. Horng Y-T, Chien C-C, Huang C-T et al (2013) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with co-expressed propionate permease (prpP), beta-ketothiolase B (bktB), and propionate-CoA synthase (prpE) in Escherichia coli. Biochem Eng J 78:73–79CrossRefGoogle Scholar
  64. Huijberts G, de Rijk TC, de Waard P et al (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly (3-hydroxyalkanoate) synthesis. J Bacteriol 176(6):1661–1666PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hume AR, Nikodinovic-Runic J, O’Connor KE (2009) FadD from Pseudomonas putida CA-3 is a true long-chain fatty acyl coenzyme A synthetase that activates phenylalkanoic and alkanoic acids. J Bacteriol 191(24):7554–7565PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ibrahim MH, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly (3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76(23):7890–7895PubMedPubMedCentralCrossRefGoogle Scholar
  67. Insomphun C, Kobayashi S, Fujiki T et al (2016) Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli. AMB Express 6(1):1–8. doi: 10.1186/s13568-016-0200-5 CrossRefGoogle Scholar
  68. Jendrossek D, Handrick R (2002) Microbial degradation of Polyhydroxyalkanoates. Annu Rev Microbiol 56(1):403–432PubMedCrossRefGoogle Scholar
  69. Jiang X, Luo X, Zhou N-Y (2015) Two Polyhydroxyalkanoate synthases from distinct classes from the aromatic degrader Cupriavidus pinatubonensis JMP134 exhibit the same substrate preference. PLoS One 10 (11):e0142332. doi:http://dx.doi.org/10.1371/journal.pone.0142332CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kadouri D, Jurkevitch E, Okon Y et al (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31(2):55–67PubMedCrossRefGoogle Scholar
  71. Kang Z, Wang Q, Zhang H et al (2008) Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79(2):203–208PubMedCrossRefGoogle Scholar
  72. Kang Z, Du L, Kang J et al (2011) Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Bioresour Technol 102(11):6600–6604PubMedCrossRefGoogle Scholar
  73. Kanjanachumpol P, Kulpreecha S, Tolieng V et al (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst Eng 36(10):1463–1474PubMedCrossRefGoogle Scholar
  74. Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29(2):157–172CrossRefGoogle Scholar
  75. Kaur G, Srivastava A, Chand S (2012) Advances in biotechnological production of 1, 3-propanediol. Biochem Eng J 64:106–118CrossRefGoogle Scholar
  76. Keenan TM, Tanenbaum SW, Stipanovic AJ et al (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and Levulinic acid. Biotechnol Prog 20(6):1697–1704PubMedCrossRefGoogle Scholar
  77. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326PubMedCrossRefGoogle Scholar
  78. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619CrossRefGoogle Scholar
  79. Kılıçay E, Demirbilek M, Türk M et al (2011) Preparation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44(3):310–320PubMedCrossRefGoogle Scholar
  80. Kim BS, Lee SY, Chang HN (1992) Production of poly-β-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14(9):811–816CrossRefGoogle Scholar
  81. Kim E-J, Son HF, Kim S et al (2014a) Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Biochem Biophys Res Commun 444(3):365–369PubMedCrossRefGoogle Scholar
  82. Kim J, Chang JH, Kim E-J et al (2014b) Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochem Biophys Res Commun 443(3):783–788PubMedCrossRefGoogle Scholar
  83. Kim HS, Oh YH, Jang Y-A et al (2016) Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly (3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microb Cell Factories 15(1):1–13. doi: 10.1186/s12934-016-0495-6 CrossRefGoogle Scholar
  84. Kirk RG, Ginzburg M (1972) Ultrastructure of two species of Halobacterium. J Ultrastruct Res 41(1–2):80–94PubMedCrossRefGoogle Scholar
  85. Kshirsagar PR, Suttar R, Nilegaonkar SS et al (2013) Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J Biochem Technol 4(1):512–517Google Scholar
  86. Kulkarni S, Kanekar P, Nilegaonkar S et al (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate)(PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresour Technol 101(24):9765–9771PubMedCrossRefGoogle Scholar
  87. Łabużek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90(3):353–357PubMedCrossRefGoogle Scholar
  88. Lau N-S, Chee J-Y, Tsuge T et al (2010) Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM (JCM15050). Bioresour Technol 101(20):7916–7923PubMedCrossRefGoogle Scholar
  89. Le Meur S, Zinn M, Egli T et al (2013) Poly (4-hydroxybutyrate)(P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Factories 12(1):1–11. doi: 10.1186/1475-2859-12-123 CrossRefGoogle Scholar
  90. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14PubMedCrossRefGoogle Scholar
  91. Lee S, Jeon E, Yun HS et al (2011) Improvement of fatty acid biosynthesis by engineered recombinant Escherichia coli. Biotechnol Bioprocess Eng 16(4):706–713CrossRefGoogle Scholar
  92. Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782Google Scholar
  93. Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65PubMedCrossRefGoogle Scholar
  94. Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879PubMedCrossRefGoogle Scholar
  95. Li R, Chen Q, Wang PG et al (2007) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75(5):1103–1109PubMedCrossRefGoogle Scholar
  96. Li XT, Sun J, Chen S et al (2008) In vitro investigation of maleated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for its biocompatibility to mouse fibroblast L929 and human microvascular endothelial cells. J Biomed Mater Res A 87(3):832–842PubMedCrossRefGoogle Scholar
  97. Li Q, Chen Q, Li M-J et al (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotechnol 28(1):92–95CrossRefGoogle Scholar
  98. Li X, Chang H, Luo H et al (2015) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A 103(3):1169–1175PubMedCrossRefGoogle Scholar
  99. Li T, Ye J, Shen R et al (2016) Semi-rational approach for ultra-high poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol. doi: 10.1021/acssynbio.6b00083 CrossRefPubMedGoogle Scholar
  100. Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly (3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209(1):135–150PubMedCrossRefGoogle Scholar
  101. Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly (β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56(8):2517–2521PubMedPubMedCentralGoogle Scholar
  102. Liu Y, Huang S, Zhang Y et al (2014) Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci 26(7):1453–1462CrossRefGoogle Scholar
  103. Lomas AJ, Webb WR, Han J et al (2013) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods 19(8):577–585PubMedPubMedCentralCrossRefGoogle Scholar
  104. López-Cuellar M, Alba-Flores J, Rodríguez JG et al (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48(1):74–80PubMedCrossRefGoogle Scholar
  105. Lu X, Zhang J, Wu Q et al (2003) Enhanced production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221(1):97–101PubMedCrossRefGoogle Scholar
  106. Lu XY, Wu Q, Zhang WJ et al (2004) Molecular cloning of polyhydroxyalkanoate synthesis operon from Aeromonas hydrophila and its expression in Escherichia coli. Biotechnol Prog 20(5):1332–1336PubMedCrossRefGoogle Scholar
  107. Lu XY, Zhang Y, Wang L (2010) Preparation and in vitro drug-release behavior of 5-fluorouracil-loaded poly (hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and microparticles. J Appl Polym Sci 116(5):2944–2950Google Scholar
  108. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53PubMedPubMedCentralGoogle Scholar
  109. Manchak J, Page WJ (1994) Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 140(4):953–963CrossRefGoogle Scholar
  110. Mansfield DA, Anderson AJ, Naylor LA (1995) Regulation of PHB metabolism in Alcaligenes eutrophus. Can J Microbiol 41(13):44–49CrossRefGoogle Scholar
  111. Masaeli E, Wieringa PA, Morshed M et al (2014) Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomed Nanotechnol Biol Med 10(7):1559–1569CrossRefGoogle Scholar
  112. Masamune S, Palmer MA, Gamboni R et al (1989a) Bio-Claisen condensation catalyzed by thiolase from Zoogloea ramigera. Active site cysteine residues. J Am Chem Soc 111(5):1879–1881CrossRefGoogle Scholar
  113. Masamune S, Walsh C, Sinskey A et al (1989b) Poly-(R)-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl Chem 61(3):303–312CrossRefGoogle Scholar
  114. Masood F, Chen P, Yasin T et al (2013) Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater Sci Eng C Mater Biol Appl 33(3):1054–1060PubMedCrossRefGoogle Scholar
  115. Masood F, Yasin T, Hameed A (2015) Polyhydroxyalkanoates–what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35(4):514–521PubMedCrossRefGoogle Scholar
  116. Matsumoto K, Matsusaki H, Taguchi S et al (2001) Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2(1):142–147PubMedCrossRefGoogle Scholar
  117. Matsumoto K, Tanaka Y, Watanabe T et al (2013) Directed evolution and structural analysis of NADPH-dependent Acetoacetyl coenzyme A (Acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Appl Environ Microbiol 79(19):6134–6139PubMedPubMedCentralCrossRefGoogle Scholar
  118. Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1(1):17–22PubMedCrossRefGoogle Scholar
  119. Mauclaire L, Brombacher E, Bünger J et al (2010) Factors controlling bacterial attachment and biofilm formation on medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces 76(1):104–111PubMedCrossRefGoogle Scholar
  120. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183(14):4235–4243PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mejía M, Segura D, Espín G et al (2010) Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poly-β-hydroxybutyrate (PHB) synthesis. J Appl Microbiol 108(1):55–61PubMedCrossRefGoogle Scholar
  122. Mendes JBE, Riekes MK, de Oliveira VM et al (2012) PHBV/PCL microparticles for controlled release of resveratrol: physicochemical characterization, antioxidant potential, and effect on hemolysis of human erythrocytes. Sci World J 2012. doi: http://dx.doi.org/10.1100/2012/542937 CrossRefGoogle Scholar
  123. Meng D-C, Shi Z-Y, Wu L-P et al (2012) Production and characterization of poly (3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14(4):317–324PubMedCrossRefGoogle Scholar
  124. Mercan N, Beyatli Y (2005) Production of poly-beta-hydroxybutyrate (PHB) by Rhizobium meliloti, R. viciae and Bradyrhizobium japonicum with different carbon and nitrogen sources, and inexpensive substrates. Zuckerindustrie 130(5):410–415Google Scholar
  125. Merrick J, Doudoroff M (1964) Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system. J Bacteriol 88(1):60–71PubMedPubMedCentralGoogle Scholar
  126. Miková G, Chodák I (2006) Properties and modification of poly(3-hydroxybutanoate). Chem List 100(12):1075–1083Google Scholar
  127. Mittendorf V, Robertson EJ, Leech RM et al (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc Natl Acad Sci U S A 95(23):13397–13402PubMedPubMedCentralCrossRefGoogle Scholar
  128. Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7(10):1279–1290PubMedCrossRefGoogle Scholar
  129. Modis Y, Wierenga RK (2000) Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J Mol Biol 297(5):1171–1182PubMedCrossRefGoogle Scholar
  130. Mumtaz T, Yahaya NA, Abd-Aziz S et al (2010) Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent–a Malaysian perspective. J Clean Prod 18(14):1393–1402CrossRefGoogle Scholar
  131. Narayanan A, Ramana KV (2012) Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3. Biotech 2(4):287–296Google Scholar
  132. Nath A, Dixit M, Bandiya A et al (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 99(13):5749–5755PubMedCrossRefGoogle Scholar
  133. Ng K-S, Wong Y-M, Tsuge T et al (2011) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochem 46(8):1572–1578CrossRefGoogle Scholar
  134. Nikel PI, de Almeida A, Melillo EC et al (2006) New recombinant Escherichia coli strain tailored for the production of poly (3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nikel PI, Giordano AM, de Almeida A et al (2010) Elimination of D-lactate synthesis increases poly (3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microbiol 76(22):7400–7406PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nishioka M, Nakai K, Miyake M et al (2001) Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnol Lett 23(14):1095–1099CrossRefGoogle Scholar
  137. Nomura CT, Taguchi K, Taguchi S et al (2004a) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70(2):999–1007PubMedPubMedCentralCrossRefGoogle Scholar
  138. Nomura CT, Tanaka T, Gan Z et al (2004b) Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-Ketoacyl-acyl-carrier-protein synthase III (f abH) and polyhydroxyalkanoate synthesis genes. Biomacromolecules 5(4):1457–1464PubMedCrossRefGoogle Scholar
  139. Nomura CT, Taguchi K, Gan Z et al (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71(8):4297–4306PubMedPubMedCentralCrossRefGoogle Scholar
  140. Normi YM, Hiraishi T, Taguchi S et al (2005) Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly (3-hydroxybutyrate) biosynthesis in Escherichia coli. Macromol Biosci 5(3):197–206PubMedCrossRefGoogle Scholar
  141. Novikov LN, Novikova LN, Mosahebi A et al (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16):3369–3376PubMedCrossRefGoogle Scholar
  142. Obruca S, Marova I, Melusova S et al (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61(4):947–953CrossRefGoogle Scholar
  143. Ojumu T, Yu J, Solomon B (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol 3(1):18–24CrossRefGoogle Scholar
  144. Okamura K, Marchessault R (1967) X-ray structure of poly-β-hydroxybutyrate. In: Ramachandran G (ed) Conformation of biopolymers, vol 2, pp 709–720. doi: 10.1016/B978-1-4832-2843-3.50023-6 CrossRefGoogle Scholar
  145. Ouyang S-P, Luo RC, Chen S-S et al (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8(8):2504–2511PubMedCrossRefGoogle Scholar
  146. Palmer M, Differding E, Gamboni R et al (1991) Biosynthetic thiolase from Zoogloea ramigera. Evidence for a mechanism involving Cys-378 as the active site base. J Biol Chem 266(13):8369–8375PubMedGoogle Scholar
  147. Panda B, Sharma L, Mallick N (2005) Poly-β-hydroxybutyrate accumulation in Nostoc muscorum and Spirulina platensis under phosphate limitation. J Plant Physiol 162(12):1376–1379PubMedCrossRefGoogle Scholar
  148. Park SJ, Lee SY (2004) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 114(1–3):335–346CrossRefGoogle Scholar
  149. Park SJ, J-i C, Lee SY (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzym Microb Technol 36(4):579–588CrossRefGoogle Scholar
  150. Peña C, Castillo T, García A et al (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7(4):278–293PubMedPubMedCentralCrossRefGoogle Scholar
  151. Peng S-W, Guo X-Y, Shang G-G et al (2011) An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials 32(10):2546–2555PubMedCrossRefGoogle Scholar
  152. Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264(26):15298–15303PubMedGoogle Scholar
  153. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  154. Phithakrotchanakoon C, Champreda V, S-i A et al (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77(6):1262–1268PubMedCrossRefGoogle Scholar
  155. Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147(12):3353–3358PubMedCrossRefGoogle Scholar
  156. Quillaguaman J, Hashim S, Bento F et al (2005) Poly (β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99(1):151–157PubMedCrossRefGoogle Scholar
  157. Raberg M, Bechmann J, Brandt U et al (2011) Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex. Appl Environ Microbiol 77(7):2254–2263PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rai R, Keshavarz T, Roether J et al (2011a) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 72(3):29–47CrossRefGoogle Scholar
  159. Rai R, Yunos DM, Boccaccini AR et al (2011b) Poly-3-hydroxyoctanoate P (3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 12(6):2126–2136PubMedCrossRefGoogle Scholar
  160. Rao U, Sridhar R, Sehgal P (2010) Biosynthesis and biocompatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J 49(1):13–20CrossRefGoogle Scholar
  161. Rathbone S, Furrer P, Lübben J et al (2010) Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res A 93(4):1391–1403PubMedCrossRefGoogle Scholar
  162. Reddy MV, Nikhil G, Mohan SV et al (2012) Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents. Bioresour Technol 123:471–479CrossRefGoogle Scholar
  163. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33PubMedPubMedCentralCrossRefGoogle Scholar
  164. Rehm BH (2015) Polyhydroxyalkanoates. http://lipidlibrary.aocs.org/Biochemistry/content.cfm?Item Number=41298. Accessed 25 Feb 2016
  165. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25(1):3–19PubMedCrossRefGoogle Scholar
  166. Rehm BH, Qingsheng Q, Beermann BB et al (2001) Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem J 358(1):263–268PubMedPubMedCentralCrossRefGoogle Scholar
  167. Rehm BH, Antonio RV, Spiekermann P et al (2002) Molecular characterization of the poly (3-hydroxybutyrate)(PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta 1594(1):178–190PubMedCrossRefGoogle Scholar
  168. Ren Q, Sierro N, Witholt B et al (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182(10):2978–2981PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ren Q, De Roo G, Van Beilen JB et al (2005) Poly (3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 69(3):286–292PubMedCrossRefGoogle Scholar
  170. Reusch RN (1995) Low molecular weight complexed poly (3-hydroxybutyrate): a dynamic and versatile molecule in vivo. Can J Microbiol 41(13):50–54PubMedCrossRefGoogle Scholar
  171. Ritchie G, Senior P, Dawes E (1971) The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii. Biochem J 121(2):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  172. Rocha RC, da Silva LF, Taciro MK et al (2008) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) P (3HB-co-3HV) with a broad range of 3HV content at high yields by Burkholderia sacchari IPT 189. World J Microbiol Biotechnol 24(3):427–431CrossRefGoogle Scholar
  173. Ruan W, Chen J, Lun S (2003) Production of biodegradable polymer by A. eutrophus using volatile fatty acids from acidified wastewater. Process Biochem 39(3):295–299CrossRefGoogle Scholar
  174. Saito T, Fukui T, Ikeda F et al (1977) An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera. Arch Microbiol 114(3):211–217PubMedCrossRefGoogle Scholar
  175. Sathiyanarayanan G, Kiran GS, Selvin J et al (2013) Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol 60:253–261PubMedCrossRefGoogle Scholar
  176. Sato S, Kanazawa H, Tsuge T (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 90(3):951–959PubMedCrossRefGoogle Scholar
  177. Satoh H, Mino T, Matsuo T (1999) PHA production by activated sludge. Int J Biol Macromol 25(1):105–109PubMedCrossRefGoogle Scholar
  178. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847PubMedPubMedCentralCrossRefGoogle Scholar
  179. Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes eutrophus poly (3-hydroxybutyrate) biosynthetic operon: identification of the N terminus of poly (3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173(1):168–175PubMedPubMedCentralCrossRefGoogle Scholar
  180. Shabna A, Saranya V, Malathi J et al (2014) Indigenously produced polyhydroxyalkanoate based co-polymer as cellular supportive biomaterial. J Biomed Mater Res A 102(10):3470–3476PubMedCrossRefGoogle Scholar
  181. Shah M, Naseer MI, Choi MH et al (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharm 400(1):165–175PubMedCrossRefGoogle Scholar
  182. Shah M, Ullah N, Choi MH et al (2012) Amorphous amphiphilic P (3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur J Pharm Biopharm 80(3):518–527PubMedCrossRefGoogle Scholar
  183. Shimamura E, Kasuya K, Kobayashi G et al (1994a) Physical properties and biodegradability of microbial poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 27(3):878–880CrossRefGoogle Scholar
  184. Shimamura E, Scandola M, Doi Y (1994b) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate). Macromolecules 27(16):4429–4435CrossRefGoogle Scholar
  185. Shuto H, Fukul T, Saito T et al (1981) An NAD-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Eur J Biochem 118(1):53–59PubMedCrossRefGoogle Scholar
  186. Sindhu R, Silviya N, Binod P et al (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72CrossRefGoogle Scholar
  187. Singh A, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357PubMedCrossRefGoogle Scholar
  188. Slater SC, Voige W, Dennis D (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–4436PubMedPubMedCentralCrossRefGoogle Scholar
  189. Slater S, Houmiel KL, Tran M et al (1998) Multiple β-ketothiolases mediate poly (β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180(8):1979–1987PubMedPubMedCentralGoogle Scholar
  190. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Biomaterials. Springer, pp 123–213CrossRefGoogle Scholar
  191. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228CrossRefGoogle Scholar
  192. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96CrossRefGoogle Scholar
  193. Su Z, Li P, Wu B et al (2014) PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering. Mater Sci Eng C Mater Biol Appl 45:374–382PubMedCrossRefGoogle Scholar
  194. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555CrossRefGoogle Scholar
  195. Suriyamongkol P, Weselake R, Narine S et al (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-a review. Biotechnol Adv 25(2):148–175PubMedCrossRefGoogle Scholar
  196. Tan G-YA, Chen C-L, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706–754CrossRefGoogle Scholar
  197. Thompson S, Mayerl F, Peoples OP et al (1989) Mechanistic studies on. Beta.-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28(14):5735–5742PubMedCrossRefGoogle Scholar
  198. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56(11):3360–3367PubMedPubMedCentralGoogle Scholar
  199. Tomizawa S, Hyakutake M, Saito Y et al (2011) Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC subunit of PHA synthase from Bacillus cereus YB-4 in recombinant Escherichia coli. Biomacromolecules 12(7):2660–2666PubMedCrossRefGoogle Scholar
  200. Tripathi AD, Srivastava SK, Singh RP (2013) Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp. Biomass Bioenergy 55:243–250CrossRefGoogle Scholar
  201. Tsuge T, Taguchi K, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid ß-oxidation. Int J Biol Macromol 31(4):195–205PubMedCrossRefGoogle Scholar
  202. Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99(15):6231–6240PubMedCrossRefGoogle Scholar
  203. Urtuvia V, Villegas P, González M et al (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213PubMedCrossRefGoogle Scholar
  204. Valentin H, Dennis D (1996) Metabolic pathway for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene. Appl Environ Microbiol 62(2):372–379PubMedPubMedCentralGoogle Scholar
  205. Valentin HE, Dennis D (1997) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58(1):33–38PubMedCrossRefGoogle Scholar
  206. Valentin HE, Steinbüchel A (1995) Accumulation of poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polymer Degradation 3(3):169–175CrossRefGoogle Scholar
  207. Vigneswari S, Nik LA, Majid M et al (2010) Improved production of poly (3-hydroxybutyrate-co-4-hydroxbutyrate) copolymer using a combination of 1, 4-butanediol and γ-butyrolactone. World J Microbiol Biotechnol 26(4):743–746CrossRefGoogle Scholar
  208. Wang F, Lee SY (1997) Production of poly (3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl Environ Microbiol 63(12):4765–4769PubMedPubMedCentralGoogle Scholar
  209. Wang Y, Bian Y-Z, Wu Q et al (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868PubMedCrossRefGoogle Scholar
  210. Wang H-h, X-t L, Chen G-Q (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44(1):106–111CrossRefGoogle Scholar
  211. Wang L, Wang Z-H, Shen C-Y et al (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31(7):1691–1698PubMedCrossRefGoogle Scholar
  212. Wang A, Gan Y, Qu J et al (2012a) Application of Electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate]-Ecoflex Mats in periodontal regeneration: a primary study. Paper presented at the Proceedings of the 2012 International Conference on Biomedical Engineering and BiotechnologyGoogle Scholar
  213. Wang Q, Tappel RC, Zhu C et al (2012b) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78(2):519–527PubMedPubMedCentralCrossRefGoogle Scholar
  214. Wang B, Sharma-Shivappa RR, Olson JW et al (2013a) Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind Crop Prod 43:802–811CrossRefGoogle Scholar
  215. Wang Y, Chen R, Cai J et al (2013b) Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS One 8(4):e60318. doi:http://dx.doi.org/10.1371/journal.pone.0060318CrossRefPubMedPubMedCentralGoogle Scholar
  216. Wang H, He X-Q, Jin T et al (2016) Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther 7(1):1–13. doi: 10.1186/s13287-016-0277-4 CrossRefGoogle Scholar
  217. Webb WR, Dale TP, Lomas AJ et al (2013) The application of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials 34(28):6683–6694PubMedCrossRefGoogle Scholar
  218. Witkowski A, Joshi AK, Smith S (1997) Characterization of the interthiol acyltransferase reaction catalyzed by the β-ketoacyl synthase domain of the animal fatty acid synthase. Biochemistry 36(51):16338–16344PubMedCrossRefGoogle Scholar
  219. Wodzinska J, Snell K, Rhomberg A et al (1996) Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 118(26):6319–6320CrossRefGoogle Scholar
  220. Xie WP, Chen G-Q (2008) Production and characterization of terpolyester poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38(3):384–389CrossRefGoogle Scholar
  221. Xie H, Li J, Li L et al (2013) Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 9(8):7845–7854PubMedCrossRefGoogle Scholar
  222. Xiong Y-C, Yao Y-C, Zhan X-Y et al (2010) Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed 21(1):127–140PubMedCrossRefGoogle Scholar
  223. Xu X-Y, Li X-T, Peng S-W et al (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 31(14):3967–3975PubMedCrossRefGoogle Scholar
  224. Xu F, Huang S, Liu Y et al (2014) Comparative study on the production of poly (3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 98(9):3965–3974PubMedCrossRefGoogle Scholar
  225. Yabutani T, Maehara A, Ueda S et al (1995) Analysis of β-ketothiolase and acetoacetyl-CoA reductase genes of a methylotrophic bacterium, Paracoccus denitrifleans, and their expression in Escherichia coli. FEMS Microbiol Lett 133(1–2):85–90PubMedGoogle Scholar
  226. Ying TH, Ishii D, Mahara A et al (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29(10):1307–1317PubMedCrossRefGoogle Scholar
  227. You M, Peng G, Li J et al (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313PubMedCrossRefGoogle Scholar
  228. Yuan M-Q, Shi Z-Y, Wei X-X et al (2008) Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett 283(2):167–175PubMedCrossRefGoogle Scholar
  229. Zhang C, Zhao L, Dong Y et al (2010) Folate-mediated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 76(1):10–16PubMedCrossRefGoogle Scholar
  230. Zhang Y, Sun W, Wang H et al (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147:307–314PubMedCrossRefGoogle Scholar
  231. Zhang C, Zhang Z, Zhao L (2015a) Folate-decorated poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity. Drug Deliv:1–8Google Scholar
  232. Zhang W, Chen C, Cao R et al (2015b) Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications. Chembiochem 16(1):156–166PubMedCrossRefGoogle Scholar
  233. Zheng Z, Zhang M-J, Zhang G et al (2004) Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene. Antonie Van Leeuwenhoek 85(2):93–101PubMedCrossRefGoogle Scholar
  234. Zheng LZ, Li Z, Tian H-L et al (2005) Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein: coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiol Lett 252(2):299–307PubMedCrossRefGoogle Scholar
  235. Zhou Q, Shi Z-Y, Meng D-C et al (2011) Production of 3-hydroxypropionate homopolymer and poly (3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 13(6):777–785PubMedCrossRefGoogle Scholar
  236. Zhu XH, Wang CH, Tong YW (2007) Growing tissue-like constructs with Hep3B/HepG2 liver cells on PHBV microspheres of different sizes. J Biomed Mater Res B Appl Biomater 82(1):7–16PubMedCrossRefGoogle Scholar
  237. Zhu C, Chiu S, Nakas JP et al (2013) Bioplastics from waste glycerol derived from biodiesel industry. J Appl Polym Sci 130(1):1–13CrossRefGoogle Scholar
  238. Zhuang Q, Wang Q, Liang Q et al (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86PubMedCrossRefGoogle Scholar
  239. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Del Rev 53(1):5–21CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Aneesh Balakrishna Pillai
    • 1
  • Hari Krishnan Kumarapillai
    • 1
  1. 1.Environmental Biology LaboratoryRajiv Gandhi Centre for BiotechnologyPoojappura, ThiruvananthapuramIndia

Personalised recommendations