Airborne Self-adaptive Multi-sensor Management

  • Meiqin Liu
  • Yue Zhang
  • Zhen Fan
  • Yan He
  • Senlin Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 710)


Sensor management plays an important role in data fusion system, the airborne multi-sensor system typically operates under resource constraints that prevents the simultaneous use of all resources all of the time. Considered the multi-sensor management, this paper presents an algorithm of modified efficiency function which synthetically considers the environmental factors, mission requirements, target statements and sensor characteristics to make it self-adaptive and suitable for multi-sensor management in resource limited area. It could realize the self-adaptive scheduling on tracking accuracy under environmental and resource constraints. The simulation on PAR, IRST and ESM show that the algorithm is reasonable and effective.


Sensor management Target priority Sensor-target pairing Modified efficiency function Airborne Measurement precision 


  1. 1.
    Ratton, L.: Radar scheduling with emission constraints. Acquis. Track. Pointing 16, 4714 (2002)Google Scholar
  2. 2.
    Hestilow, T.J., Wei, T., Huang, Y.: Sensor scheduling and target tracking using expectation propagation. In: 2005 IEEE/SP Workshop on Statistical Signal Processing, pp. 1232–1237. IEEE (2005)Google Scholar
  3. 3.
    Katsilieris, F., Driessen, H., Yarovoy, A.: Threat-based sensor management for target tracking. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2772–2785 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhi, J., Liu, J., Fu, C.: Evaluation of aerial target threat degree based on improved grey interrelated analysis method. In: IEEE International Conference on Grey Systems and Intelligent Services, pp. 740–744 (2009)Google Scholar
  5. 5.
    Yan, D.: Sensor scheduling in target tracking. In: 2014 11th World Congress on IEEE Intelligent Control and Automation (WCICA), pp. 2023–2025 (2015)Google Scholar
  6. 6.
    Chen, H., Chen, G., Shen, D.: Orbital evasive target tracking and sensor management. In: Hirsch, M.J., Pardalos, P.M., Murphey, R. (eds.) Dynamics of Information Systems, pp. 233–255. Springer, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Dong, H.H.: The application of auto disturbance-rejection controller in a servo tracking equipment. Ind. Control Appl. 26(9), 60–62 (2007)Google Scholar
  8. 8.
    Moran, B., Howard, S.D., Cochran, D.: An information-geometric approach to sensor management, pp. 5261–5264 (2012)Google Scholar
  9. 9.
    Huang, H.P., Wu, L.Q., Han, J.Q.: A new synthesis method for unit coordinated control system in thermal power plant-ADRC control scheme. In: International Conference on Power System Technology, pp. 133–138 (2004)Google Scholar
  10. 10.
    Ruan, J.H., Yang, F.G., Song, R.: Study on ADRC-based intelligent vehicle lateral locomotion control. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 2619–2624 (2008)Google Scholar
  11. 11.
    Liu, X.X., Pan, Q., Zhang, H.C., Dai, G.Z.: Study on algorithm of sensor management based on fucntions of efficiency and waste. Chin. J. Aeronaut. 13(1), 39–44 (2000)Google Scholar
  12. 12.
    Longbin, M., Xiaoquan, S., Yiyu, Z., Bar-Shalom, Y.: Unbiased converted measurements for tracking. IEEE Transs. Aerosp. Electron. Syst. 34(3), 1023–1027 (1998)CrossRefGoogle Scholar
  13. 13.
    Yongfei, H., Lin, D., Jianping, Z.: Algorithm of multisensor management with the waste function. J. North Univ. Chin. 26(5), 345–347 (2005)Google Scholar
  14. 14.
    Qiang, G., Harris, C.J.: Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Trans. Aerosp. Electron. Syst. 37(1), 273–280 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Meiqin Liu
    • 1
  • Yue Zhang
    • 1
  • Zhen Fan
    • 1
  • Yan He
    • 1
  • Senlin Zhang
    • 1
  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations