Advertisement

Geometry-based Computational Modeling of Calcium Signaling in an Astrocyte

  • Muhammad Uzair Khalid
  • Aapo Tervonen
  • Iina Korkka
  • Jari HyttinenEmail author
  • Kerstin Lenk
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

In the last two decades, astrocytes have gained more interest due to the realization that they are involved not only in information processing and memory formation but are also linked with several neurodegenerative disorders and brain diseases. Communicating indirectly with synapses via released gliotransmitters such as glutamate, astrocytes take part in the neuronal activity by propagating intracellular and intercellular waves of calcium (Ca2+). However, it is not clear what effect does the astrocyte geometry have on these Ca2+ wave dynamics. In this study, we present a geometry-based computational model of an astrocyte that is used to simulate the stimulation and propagation of intracellular astrocytic Ca2+ waves. To our best knowledge, this is the first computational model to study the effect of the single astrocyte geometry on the Ca2+ wave propagation, while taking into account the intricate biological pathways that regulate internal Ca2+ dynamics. By simulating theoretical astrocyte geometries with a fixed glutamate stimulus, we found that narrower astrocyte processes lead to stronger Ca2+ wave dynamics, in comparison to wider processes. From this study, we concluded that the geometry does have a visible effect on the overall intracellular Ca2+ dynamics.

Keywords

Astrocytes Synapses Calcium Signaling Astrocyte Geometry Computational Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Nedergaard M, Ransom B, Goldman SA., (2003) New Roles for Astrocytes: Redefining the functional Architecture of the Brain. Trends Neurosci 26:523-530Google Scholar
  2. 2. Volterra, A., Meldolesi, J., (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6: 626–640Google Scholar
  3. 3. Kang, M., Othmer, H.G., (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19: 1–21Google Scholar
  4. 4. Mesiti, F., Veletić, M., Floor, P.A., Balasingham, I., (2015) Astrocyte-neuron communication as cascade of equivalent circuits. Nano Commun. Netw. 6:183-197.Google Scholar
  5. 5. Dupont, G., Combettes, L., and Leybaert, L., (2007) Calcium dynamics: Spatiotemporal organization from the subcellular to the organ level. Int. Rev. Cytol. 261:193–245.Google Scholar
  6. 6. Volman, V., Ben-Jacob, E., Levine, H. (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neur. Comput. 19:303–326Google Scholar
  7. 7. Dani, J.W., Chernjavsky, A., Smith, S.J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440Google Scholar
  8. 8. Parpura, V. (2004) Glutamate-mediated bi-directional signaling between neurons and astrocytes. Kluwer Academic Publisher, Boston, MA.Google Scholar
  9. 9. Pasti, L., Volterra, A., Pozzan, T., Carmignoto, G. (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17:7817–7830Google Scholar
  10. 10. Porter, J.T., McCarthy, K.D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16:5073–5081Google Scholar
  11. 11. Wang, X., Lou, N., Xu, Q., Tian, G.F., Peng, W.G., Han, X., Kang, J., Takano, T., Nedergaard, M. (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–823Google Scholar
  12. 12. Nett, W.J., Oloff, S.H., McCarthy, K.D. (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87:528–537Google Scholar
  13. 13. Di Castro, M.A., Chuquet, J., Liaudet, N., Bhaukaurally, K., Santello, M., Bouvier, D., Tiret, P., Volterra, A., (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14: 1276–1284Google Scholar
  14. 14. Charles, A. (1998) Intercellular calcium waves in glia. Glia 24:39–49Google Scholar
  15. 15. Stout, C.E., Costantin, J.L., Naus, C.C.G., Charles, A.C. (2002) Intercellular calcium signaling in astocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277:482–488Google Scholar
  16. 16. Evanko, D.S., Sul, J.Y., Zhang, Q., Haydon, P.G. (2004) The regulated release of transmitters from astrocytes. Kluwer Academic PublisherGoogle Scholar
  17. 17. Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G. (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743Google Scholar
  18. 18. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G. (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10:2129–2142Google Scholar
  19. 19. Verkhratsky, A., Kettenmann, H. (1996) Calcium signaling in glial cells. Trends Neurosci. 19:346–352Google Scholar
  20. 20. De Pittà, M., Volman, V., Levine, H., Pioggia, G., De Rossi, D., Ben-Jacob, E. (2008) Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys. Rev. E 77: 030903(R)Google Scholar
  21. 21. Oschmann F., Berry H., Obermayer K., Lenk K. (2017) From in silico astrocyte cell models to neuron-astrocyte network models: A review. Brain Res. Bull. S0361-9230(17)30054-0 (in press)Google Scholar
  22. 22. De Pittà, M., Goldberg, M., Volman, V., Berry, H., Ben-Jacob, E., (2009) Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J. Biol. Phys. 35:383–411Google Scholar
  23. 23. Tewari, S., Parpura, V., (2013) A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Front. Comput. Neurosci. 7:145Google Scholar
  24. 24. Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105 Danbolt, N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65, 1–105Google Scholar
  25. 25. Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neuro. 1, 683–692Google Scholar
  26. 26. Lallouette, J., De Pittà, M., Ben-Jacob, E., Berry, H., (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front. Comput. Neurosci. 8:1–18Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Muhammad Uzair Khalid
    • 1
  • Aapo Tervonen
    • 1
  • Iina Korkka
    • 1
  • Jari Hyttinen
    • 1
    Email author
  • Kerstin Lenk
    • 1
    • 2
  1. 1.BioMediTech Institute and Faculty of Biomedical Sciences and EngineeringTampere University of TechnologyTampereFinland
  2. 2.DFG-Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany

Personalised recommendations