Bayesian Modelling of Skull Conductivity Uncertainties in EEG Source Imaging

  • Ville Rimpiläinen
  • Alexandra Koulouri
  • Felix Lucka
  • Jari P. Kaipio
  • Carsten H. Wolters
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

Knowing the correct skull conductivity is crucial for the accuracy of EEG source imaging, but unfortunately, its true value, which is inter- and intra-individually varying, is difficult to determine. In this paper, we propose a statistical method based on the Bayesian approximation error approach to compensate for source imaging errors related to erronous skull conductivity. We demonstrate the potential of the approach by simulating EEG data of focal source activity and using the dipole scan algorithm and a sparsity promoting prior to reconstruct the underlying sources. The results suggest that the greatest improvements with the proposed method can be achieved when the focal sources are close to the skull.

Keywords

Electroencephalography Bayesian modelling inverse problems skull conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellenrieder, N., Muravchik, C.H., Nehorai, A.: Effects of geometric head model perturbations on the EEG forward and inverse problems IEEE Trans. Biomed. Eng. 53, 421–429 (2006)Google Scholar
  2. 2.
    Vanrumste, B., Hoey, G., Van, Walle R., Van, D’Hav M., Lemahieu, I., Boon, P.: Dipole location errors in electroencephalogram source analysis due to volume conductor model errors Med. Biol. Eng. Comput. 38, 528–534 (2000)Google Scholar
  3. 3.
    Vorwerk, J., Cho, J.-H., Rampp, S., Hamer, H., Knösche, T.R., Wolters, C.H.: A guideline for head volume conductor modeling in EEG and MEG NeuroImage. 100, 590–607 (2014)Google Scholar
  4. 4.
    Slomka Piotr J., Baum Richard P.. Multimodality image registration with software: state-of-the-art Eur. J. Nucl. Med. Mol. Imaging. 2009;36:44–55Google Scholar
  5. 5.
    Lew S., Wolters C.H., Anwander A., Makeig S, R. MacLeod. Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model Human Brain Mapp.. 2009;30:2862–2878Google Scholar
  6. 6.
    Wolters, C.H., Lew, S., MacLeod, R.S., Hämäläinen, M.: Combined EEG/MEG source analysis using calibrated finite element models Biomedizinische Technik/Biomedical Engineering. Rostock, Germany: Walter de Gruyter 55 (Suppl. 1), 64–68 (2010)Google Scholar
  7. 7.
    Aydin, Ü., Vorwerk, J., Küpper, P., et al.: Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model PLoS ONE. 9, e93154 (2014)Google Scholar
  8. 8.
    Goncalves, S.I., Munck, J.C., Verbunt, J.P., Heethaar, R.M., Silva, F.H.: In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data IEEE Trans. Biomed. Eng.. 50, 1124–1128 (2003)Google Scholar
  9. 9.
    Kaipio J.P., Kolehmainen V.. Approximate marginalization over modeling errors and uncertainties in inverse problems in Bayesian Theory and Applications (Damien P., Polson N., Stephens D.. , eds.)Oxford University Press 2013Google Scholar
  10. 10.
    Nissinen, A., Heikkinen, L.M., Kolehmainen, V., Kaipio, J.P.: Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography Meas. Sci. Technol. 20, 105504 (2009)Google Scholar
  11. 11.
    Arridge, S.R., Kaipio, J.P., Kolehmainen, V., et al.: Approximation errors and model reduction with an application in optical diffusion tomography Inverse Problems. 22, 175–195 (2006)Google Scholar
  12. 12.
    Koulouri, A., Rimpiläinen, V., Brookes, M., Kaipio, J.P.: Compensation of domain modelling errors in the inverse source problem of the Poisson equation: Application in electroencephalographic imaging Appl. Num. Math. 106, 24–36 (2016)Google Scholar
  13. 13.
    Haufe, S., Nikulin, V.V., Ziehe, A., Müller, K.-R., Nolte, G.: Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage. 42, 726–738 (2008)Google Scholar
  14. 14.
    Boyd S. P., Vandenberghe L.. Convex Optimization. Cambridge University Press 2004Google Scholar
  15. 15.
    Lucka, F., Pursiainen, S., Burger, M., Wolters, C.H.: Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents NeuroImage. 61, 1364–1382 (2012)Google Scholar
  16. 16.
    Dannhauer, M., Lanfer, B., Wolters, C., Knösche, T.: Modeling of the human skull in EEG source analysis Hum. Brain Mapp. 32, 1383–1399 (2011)Google Scholar
  17. 17.
    Ramon C., Schimpf P. H., Haueisen J.. Influence of head models on EEG simulations and inverse source localizations Biomed. Eng. Online. 2006;5Google Scholar
  18. 18.
    Baumann, S.B., Wozny, D.R., Kelly, S.K., Meno, F.M.: The electrical conductivity of human cerebrospinal fluid at body temperature IEEE Trans. Biomed. Eng. 44, 220–223 (1997)Google Scholar
  19. 19.
    Homma, S., Musha, T., Nakajima, Y., et al.: Conductivity ratios of the scalp-skull-brain head model in estimating equivalent dipole sources in human brain Neurosci. Res.. 22, 51–55 (1995)Google Scholar
  20. 20.
    Fuchs, M., Wagner, M., Wischmann, H.A., et al.: Improving source reconstructions by combining bioelectric and biomagnetic data Electroencephalogr. Clin. Neurophysiol. 107, 93–111 (1998)Google Scholar
  21. 21.
    Buchner, H., Knoll, G., Fuchs, M., et al.: Inverse localization of electric dipole current sources in finite element models of the human head Electroencephalogr. Clin. Neurophysiol. 102, 267–278 (1997)Google Scholar
  22. 22.
    Hoekema, R., Wieneke, G.H., van Veelen, C.W., et al.: Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 16, 29–38 (2003)Google Scholar
  23. 23.
    Wolters C.H., Köstler H., Möller C., Härdtlein J., Anwander A.. Numerical approaches for dipolemodeling in finite elementmethod based source analysis Int. Congr. Ser. 1300. 2007:189192Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ville Rimpiläinen
    • 1
  • Alexandra Koulouri
    • 2
  • Felix Lucka
    • 3
  • Jari P. Kaipio
    • 4
  • Carsten H. Wolters
    • 1
  1. 1.Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
  2. 2.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
  3. 3.Centre for Medical Image ComputingUniversity College LondonLondonUK
  4. 4.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations