Bayesian multi–dipole localization and uncertainty quantification from simultaneous EEG and MEG recordings

  • Filippo Rossi
  • Gianvittorio Luria
  • Sara Sommariva
  • Alberto Sorrentino
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

We deal with estimation of multiple dipoles from combined MEG and EEG time–series. We use a sequential Monte Carlo algorithm to characterize the posterior distribution of the number of dipoles and their locations. By considering three test cases, we show that using the combined data the method can localize sources that are not easily (or not at all) visible with either of the two individual data alone. In addition, the posterior distribution from combined data exhibits a lower variance, i.e. lower uncertainty, than the posterior from single device.

Keywords

Bayesian method sequential Monte Carlo dipole modeling magnetoencephalography electroencephalography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaakko, Malmivuo: Comparison of the properties of EEG and MEG in detecting the electric activity of the brain Brain topography. 25, 1–19 (2012)Google Scholar
  2. 2.
    Ahlfors Seppo P, Han Jooman, Belliveau John W, Hämäläinen Matti S. Sensitivity of MEG and EEG to source orientation Brain topography. 2010;23:227–232Google Scholar
  3. 3.
    Fabio, Babiloni, Filippo, Carducci, Febo, Cincotti, et al.: Linear inverse source estimate of combined EEG and MEG data related to voluntary movements Human brain mapping. 14, 197–209 (2001)Google Scholar
  4. 4.
    Molins, A.: Stufflebeam Steven M, Brown Emery N, Hämäläinen Matti S. Quantification of the benefit from integrating MEG and EEG data in minimum 2-norm estimation. Neuroimage. 42, 1069–1077 (2008)Google Scholar
  5. 5.
    Lei, Ding, Han, Yuan: Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging Human brain mapping. 34, 775–795 (2013)Google Scholar
  6. 6.
    Henson Richard N, Mouchlianitis Elias, Friston Karl J. MEG and EEG data fusion: simultaneous localisation of face-evoked responses Neuroimage. 2009;47:581–589Google Scholar
  7. 7.
    Chowdhury, R.A., Zerouali, Y., Hedrich, T., et al.: MEG-EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy Brain topography. 28, 785–812 (2015)Google Scholar
  8. 8.
    Seokha, Ko: Jun Sung Chan. Beamformer for simultaneous magnetoencephalography and electroencephalography analysis Journal of Applied Physics. 107, 09B315 (2010)Google Scholar
  9. 9.
    Alberto, Sorrentino, Lauri, Parkkonen, Annalisa, Pascarella, Cristina, Campi, Michele, Piana: Dynamical MEG source modeling with multi-target Bayesian filtering Human brain mapping. 30, 1911–1921 (2009)Google Scholar
  10. 10.
    Alberto, Sorrentino, Gianvittorio, Luria, Riccardo, Aramini: Bayesian Multi-Dipole Modeling of a Single Topography in MEG by Adaptive Sequential Monte-Carlo Samplers Inverse Problems. 30, 045010 (2014)Google Scholar
  11. 11.
    Sara, Sommariva, Alberto, Sorrentino: Sequential Monte Carlo Samplers for SemiLinear Inverse Problems and Application to Magnetoencephalography Inverse Problems. 30, 114020 (2014)Google Scholar
  12. 12.
    Valentina, Vivaldi, Alberto, Sorrentino: Bayesian smoothing of dipoles in magneto-/electroencephalography. Inverse Problems. 32, 045007 (2016)Google Scholar
  13. 13.
    Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers Journal of the Royal Statistical Society B. 68, 411–436 (2006)Google Scholar
  14. 14.
    Robert C.P., Casella G.. Monte Carlo Statistical Methods. Springersecond ed. 2004Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Filippo Rossi
    • 1
  • Gianvittorio Luria
    • 1
  • Sara Sommariva
    • 1
  • Alberto Sorrentino
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations