Advertisement

Nonlinear Dynamics of Heart Rate Variability in Children with Asthmatic Symptoms

  • Javier Milagro
  • Eduardo Gil
  • Juan Bolea
  • Ville-Pekka Seppä
  • L. Pekka Malmberg
  • Anna S. Pelkonen
  • Anne Kotaniemi-Syrjänen
  • Mika J. Mäkelä
  • Jari Viik
  • Raquel Bailón
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 65)

Abstract

Asthma is a chronic lung disease that is prone to start during chilhood. Although symptoms can be usually controlled with medication, early diagnosis is crucial to reduce the risk of permanent airway obstruction. Despite the fact that origin of asthma is still uncertain, abnormal parasympathetic nervous system (PNS) activity has been pointed out to play a major role in its pathogenesis. In this work the use of nonlinear heart rate variability (HRV) indexes is proposed in order to look for differences between children classified as high- or low-risk of suffering from asthma in the future. PNS activity is assessed trough a filtered HRV signal. Correlation dimension analysis showed statistically significant differences distinguishing high- and low-risk. Decreased complexity observed in high-risk group suggests that abnormal PNS activity might be related with increased risk of developing asthma.

Keywords

heart rate variability asthma children nonlinear parasympathetic nervous system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Asthma Education and Prevention Program (National Heart and Lung and Blood Institute). Second Expert Panel on the Management of Asthma . Expert panel report 2: guidelines for the diagnosis and management of asthma. DIANE Publishing 1997.Google Scholar
  2. 2.
    Sheffer A.L., Bousquet J., Busse, W.W., et al. International consensus report on diagnosis and treatment of asthma. Eur. Respir. J. 1992;5:601–641.Google Scholar
  3. 3.
    Martinez F.D. Recognizing early asthma. Allergy. 1999;54:24–28.Google Scholar
  4. 4.
    Agertoft, L., Pedersen S.: Effects of long-term treatment with an inhaled corticosteroid on growth and pulmonary function in asthmatic children. Respir. Med. 1994;88:373–381.Google Scholar
  5. 5.
    Castro-Rodriguez J.A. The Asthma Predictive Index: a very useful tool for predicting asthma in young children. J. Allergy Clin. Immuno.l 2010;126:212–216.Google Scholar
  6. 6.
    Emin O., Esra, G., Aysegül D., Ufuk, E., Ayhan S., Rusen, D.M. Autonomic nervous system dysfunction and their relationship with disease severity in children with atopic asthma. Respir. Physiol. Neurobiol. 2012;183:206–210.Google Scholar
  7. 7.
    Lewis M.J., Short A.L., Lewis, K.E.: Autonomic nervous system control of the cardiovascular and respiratory systems in asthma. Respir. Med. 2006;100:1688–1705.Google Scholar
  8. 8.
    Morrison J.F.J., Pearson S.B., Dean H.G. Parasympathetic nervous system in nocturnal asthma BMJ (Clinical research ed.). 1988;296:1427Google Scholar
  9. 9.
    Voss A., Schulz S., Schroeder R., Baumert M., Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 2009;367:277–296.Google Scholar
  10. 10.
    Seppä V.-P., Pelkonen A.S., Kotaniemi-Syrjänen A., Viik J., Mäkelä, M.J., Malmberg, L.P. Tidal flow variability measured by impedance pneumography relates to childhood asthma risk. Eur. Respir. J. 2006;47:1687–1696.Google Scholar
  11. 11.
    Guilbert T.W., Morgan W.J., Zeiger R.S., et al. Atopic characteristics of children with recurrent wheezing at high risk for the development of childhood asthma. J. Allergy Clin. Immunol. 2004;114:1282–1287.Google Scholar
  12. 12.
    Morrison J.F., Pearson S.B. The effect of the circadian rhythm of vagal activity on bronchomotor tone in asthma. Br. J. Clin. Pharmacol. 1989;28:545–549.Google Scholar
  13. 13.
    Martínez J.P., Almeida R., Olmos S., Rocha A.P., Laguna P. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 2004;51:570–581.Google Scholar
  14. 14.
    Bolea J., Laguna P., Remartínez J.M., Rovira E., Navarro A., Bailón R. Methodological framework for estimating the correlation dimension in HRV signals. Comput. Math. Methods, Med. 2014.Google Scholar
  15. 15.
    Busek P., Vankova J., Opavskỳ, J., Salinger J., Nevsimalova S. Spectral analysis of heart rate variability in sleep. Physiol. Res. 2005;54:369.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Javier Milagro
    • 1
    • 2
  • Eduardo Gil
    • 1
    • 2
  • Juan Bolea
    • 1
    • 2
  • Ville-Pekka Seppä
    • 3
  • L. Pekka Malmberg
    • 4
    • 5
  • Anna S. Pelkonen
    • 4
    • 5
  • Anne Kotaniemi-Syrjänen
    • 3
  • Mika J. Mäkelä
    • 4
    • 5
  • Jari Viik
    • 3
  • Raquel Bailón
    • 1
    • 2
  1. 1.BSICoS group, I3A, IIS AragónUniversity of ZaragozaZaragozaSpain
  2. 2.Centro de Investigación Biomédica en Red (CIBER)MadridSpain
  3. 3.BioMediTech Institute and Faculty of Biomedical Sciences and EngineeringTampere University of TechnologyTampereFinland
  4. 4.Skin and Allergy HospitalUniversity of HelsinkiHelsinkiFinland
  5. 5.Helsinki University HospitalHelsinkiFinland

Personalised recommendations