Advertisement

Estimation of Cardiovascular Variability

  • George ManisEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

The heart is a complex system. Its activity is affected by and affects most of the vital organs of the human body. The large number of factors influencing it results into a complicated functionality, characterized by physiological variability, difficult to be predicted and modeled. This variability hides valuable information expressing the ability of the heart to respond to normal autonomic functions of the body and to react to external events. It is used in clinical practice for both diagnosis and prognosis. It can be described with many indices, like the heart rate variability, the QT variability, the ST variability, the deceleration capacity, etc. A large number of methods have been proposed for estimating these indices, including statistical methods, frequency domain methods and non-linear ones. The research in the field is very active. A large number of papers has been published during the last two decades in the field and this number increases day by day with a continuously increasing rate.

References

  1. 1.
    Adam D, Akselrod S, Cohen R (1981) Estimation of ventricular vulnerability to fibrillation through T-wave time series analysis. Comput Cardiol 8:307–310Google Scholar
  2. 2.
    Algra A, Tijssen J, Roelandt J, Pool J, Lubsen J (1993) Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death. Circulation 88(1):180–185CrossRefGoogle Scholar
  3. 3.
    Arsenos P, Manis G (2014) Deceleration capacity of heart rate: two new methods of computation. Biomed Signal Process Control 14:158–163CrossRefGoogle Scholar
  4. 4.
    Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mkikallio T, Ulm K, Hnatkova K, Schmig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367(9523):1674–1681CrossRefGoogle Scholar
  5. 5.
    Bauer A, Kantelhardt JW, Bunde A, Barthel P, Schneider R, Malik M, Schmidt G (2006) Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Phys A Stat Mech Appl 364:423–434CrossRefGoogle Scholar
  6. 6.
    Bazett HC (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–370Google Scholar
  7. 7.
    Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF (1997) Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96(5):1557–1565CrossRefGoogle Scholar
  8. 8.
    Brosschot JF, Dijk EV, Thayer JF (2007) Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. Int J Psychophysiol 63(1):39–47CrossRefGoogle Scholar
  9. 9.
    Buccelletti E, Gilardi E, Scaini E, Galiuto L, Persiani R, Biondi A, Basile F, Silveri N (2009) Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci 13(4):299–307Google Scholar
  10. 10.
    De Souza NM, Vanderlei LCM, Garner DM (2015) Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity 20(3):84–92CrossRefGoogle Scholar
  11. 11.
    Demming T, Sandrock S, Kuhn C, Kotzott L, Tahmaz N, Bonnemeier H (2016) Deceleration capacity: a novel predictor for total mortality in patients with non-ischemic dilated cardiomyopathy. Int J Cardiol 221:289–293CrossRefGoogle Scholar
  12. 12.
    Dobson C, Kim A, Haigney M (2013) QT variability index. Prog Cardiovasc Dis 56(2):186–194CrossRefGoogle Scholar
  13. 13.
    Fridericia LS (1920) The duration of systole in the electrocardiogram of normal subjects and of patients with heart disease. Acta Medica Scand 53:469–486CrossRefGoogle Scholar
  14. 14.
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRefGoogle Scholar
  15. 15.
    Guzzetti S, La Rovere M, Pinna G, Maestri R, Borroni E, Porta A, Mortara A, Malliani A (2005) Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur Heart J 36(4):357–362CrossRefGoogle Scholar
  16. 16.
    Haigney MC, Zareba W, Gentlesk PJ, Goldstein RE, Illovsky M, McNitt S, Andrews ML, Moss AJ (2004) QT interval variability and spontaneous ventricular tachycardia or fibrillation in the multicenter automatic defibrillator implantation trial (MADIT) II patients. J Am Coll Cardiol 44(7):1481–1487CrossRefGoogle Scholar
  17. 17.
    Harte C, Meston CM (2014) Effects of smoking cessation on heart rate variability among long-term male smokers. Int J Behav Med 21(2):302–309CrossRefGoogle Scholar
  18. 18.
    Huikuri H, Stein P (2012) Clinical application of heart rate variability after acute myocardial infarction. Front Physiol 3:41CrossRefGoogle Scholar
  19. 19.
    Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA (1996) Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol 271(4 Pt 2):R1078–84Google Scholar
  20. 20.
    Kampouraki A, Manis G, Nikou C (2009) Heartbeat time series classification with support vector machines. Trans Inf Tech Biomed 13:512–518CrossRefGoogle Scholar
  21. 21.
    Karakaya O, Barutcu I, Kaya D, Esen A, Saglam M, Melek M, Onrat E, Turkmen M, Esen O, Kaymaz C (2007) Acute effect of cigarette smoking on heart rate variability. Angiology 58(5):620–624CrossRefGoogle Scholar
  22. 22.
    Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59(4):256–262CrossRefGoogle Scholar
  23. 23.
    Manis G, Arsenos P, Nikolopoulos S, Gatzoulis K, Stefanadis C (2013) Details on the application of multiresolution wavelet analysis on heartbeat timeseries. Int J Bioelectromagn 15(1):60–64Google Scholar
  24. 24.
    Martinez J, Olmos S (2005) Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans Biomed Eng 52(4):599–613CrossRefGoogle Scholar
  25. 25.
    Nearing B, Verrier R (1985) Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J Appl Physiol 92(2):541–549CrossRefGoogle Scholar
  26. 26.
    Oosterhoff P, Tereshchenko LG, van der Heyden MA, Ghanem RN, Fetics BJ, Berger RD, Vos MA (2011) Short-term variability of repolarization predicts ventricular tachycardia and sudden cardiac death in patients with structural heart disease: a comparison with QT variability index. Heart Rhythm 8(10):1584–1590CrossRefGoogle Scholar
  27. 27.
    Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip J Nonlinear Sci 1:82CrossRefGoogle Scholar
  28. 28.
    Pincus S (1995) Approximate entropy (ApEn) as a complexity measure. Chaos 5(1):110–117MathSciNetCrossRefGoogle Scholar
  29. 29.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049CrossRefGoogle Scholar
  30. 30.
    Sagie A, Larson MG, Goldberg RJ, Bengston JR, Levy D (1992) An improved method for adjusting the QT interval for heart rate (the Framingham heart study). Am J Cardiol 70(7):797–801CrossRefGoogle Scholar
  31. 31.
    Sammito S, Bckelmann I (2016) Factors influencing heart rate variability. Int Cardiovasc Forum J 6:18–22CrossRefGoogle Scholar
  32. 32.
    Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y, Document Reviewers, Gorenek B, Lip GY, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M, Macfadyen R (2015) Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17(9):1341–1353CrossRefGoogle Scholar
  33. 33.
    Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability. Hypertension 42(6):1106–1111CrossRefGoogle Scholar
  34. 34.
    Schubert C, Lambertz M, Nelesen RA, Bardwell W, Choi J, Dimsdale JE (2009) Effects of stress on heart rate complexity—a comparison between short-term and chronic stress. Biol Psychol 80(3):325–332CrossRefGoogle Scholar
  35. 35.
    Tagliaferri S, Fanelli A, Esposito G, Esposito FG, Magenes G, Signorini MG, Campanile M, Martinelli P (2015) Evaluation of the acceleration and deceleration phase-rectified slope to detect and improve IUGR clinical management. Comput Math Methods Med 2015:236896CrossRefGoogle Scholar
  36. 36.
    Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93(5):1043–1065CrossRefGoogle Scholar
  37. 37.
    Thurner S, Feurstein MC, Teich MC (1998) Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys Rev Lett 80(7):1544–1547CrossRefGoogle Scholar
  38. 38.
    Verrier RL, Klingenheben T, Malik M, El-Sherif N, Exner DV, Hohnloser SH, Ikeda T, Martnez JP, Narayan SM, Nieminen T, Rosenbaum DS (2011) Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility—consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol 58(13):1309–1324CrossRefGoogle Scholar
  39. 39.
    Wijbenga J, Balk A, Meij S, Simoons M, Malik M (1998) Heart rate variability index in congestive heart failure: relation to clinical variables and prognosis. Eur Heart J 19(11):1719–1724CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations