Advertisement

Title Cardiovascular Big Data Analytics

  • Ioanna ChouvardaEmail author
  • Nicos MaglaverasEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

The evolving pattern towards precision medicine is based on analytics at the—omics, physiology and eHealth domains. One of the main driving forces is the management and analytics of multi-level multi-scale and multi-source data containing different semantics and possibilities for the realization of personalized health through the precision medicine approach. In the case of cardiovascular big data analytics progress is evident especially at the levels of physiology and eHealth. Specifically there is progress in the ICU domain, where streaming data are the big data source comprising a paradigm for point-of-care (PoC) diagnostics helping the clinical decision support system (CDSS) for physiological assessment of the cardiorespiratory system, as well as in the eHealth domain through the uptake of advanced closed loop telemonitoring systems addressing connected health and coordinated care for multimorbid chronic disease patients. The quantification of specific data analytics, data management and computational needs for the realization of interfaces conveying from cloud to local level the necessary input to the medical users is a complex procedure, which calls for the optimal use of all the cloud, computing and machine learning and visualization tools, let alone the interoperability and data security standards and apps. In this chapter, we shall give an overview of the current state-of-the-art concerning cardiovascular big data analytics as a function of available information and communication technology, computational engineering, and user driven systems platforms for use in connected health and integrated care environments, as well as one basic example related to big data analytics as a result of streaming data at a PoC from a clinically controlled environment such as the Intensive Care Unit (ICU). The output from the application of advanced machine learning and multiparametric analytics methodology conveyed as a CDSS to the users is considered and viewed as perhaps the most important function for the success of the big data analytics and management platforms.

Keywords

Cardiorespiratory systems Big data analytics Machine learning Intensive care unit Ineffective efforts COPD multi-morbid patients Connected health CDSS 

Notes

Acknowledgements

This work was supported in part by the EC projects AEGLE (Grant agreement 644906) and WELCOME (611223).

References

  1. 1.
    Viceconti M, Hunter P, Hose R (2015) Big data, big knowledge: big data for personalized healthcare. IEEE J. Biomed. Health Informat. 19(4):1209–1215CrossRefGoogle Scholar
  2. 2.
    Martin-Sanchez F, Verspoor K (2014) Big data in medicine is driving big changes. Yearbook Med Informat 9(1):14–20Google Scholar
  3. 3.
    Andreu-Perez J et al (2015) Big Data for Health. IEEE Journal of Biomedical and Health Informatics 19(4):1193–1208CrossRefGoogle Scholar
  4. 4.
    Rumsfeld JS, Joynt KE, Maddox TM (2016) Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol 13(6):350–359. http://www.ncbi.nlm.nih.gov/pubmed/27009423CrossRefGoogle Scholar
  5. 5.
    Hu H et al (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRefGoogle Scholar
  6. 6.
    Kokkinaki A, Chouvarda I, Maglaveras N (2012) Searching biosignal databases by content and context: research oriented integration system for ECG signals (ROISES). Comput Methods Prog Biomed 108(2):453–466CrossRefGoogle Scholar
  7. 7.
    Natter MD et al (2013) An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Informat Assoc 20(1):172–179. http://jamia.oxfordjournals.org/content/20/1/172CrossRefGoogle Scholar
  8. 8.
    Segagni D et al (2012) CARDIO-i2b2: integrating arrhythmogenic disease data in i2b2. Stud Health Technol Informat 1126–1128Google Scholar
  9. 9.
    Gabetta M et al (2015) BigQ: a NoSQL based framework to handle genomic variants in i2b2. BMC Bioinformat 16(1):415. http://www.biomedcentral.com/1471-2105/16/415
  10. 10.
    Krishnan K (2013) Data warehousing in the age of big dataCrossRefGoogle Scholar
  11. 11.
    Dean J, Ghemawat S (2010) MapReduce. Commun ACM 53(1):72CrossRefGoogle Scholar
  12. 12.
    Lam MPY et al (2016) Cardiovascular proteomics in the era of big data: experimental and computational advances. Clin Proteom 13:23CrossRefGoogle Scholar
  13. 13.
    Lindsey ML et al (2015) Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American heart association. Circulation 132(9):852–872MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goloborodko AA et al (2013) Pyteomics—a python framework for exploratory data analysis and rapid software prototyping in proteomics. J Am Soc Mass Spectr 24(2):301–304CrossRefGoogle Scholar
  15. 15.
    Haberman ZC et al (2015) Wireless smartphone ECG enables large-scale screening in diverse populations. J Cardiovasc Electrophysiol 26(5):520–526CrossRefGoogle Scholar
  16. 16.
    Hsieh JC, Li AH, Yang CC (2013) Mobile, cloud, and big data computing: Contributions, challenges, and new directions in telecardiology. Int J Environ Res Public Health 10(11):6131–6153CrossRefGoogle Scholar
  17. 17.
    Johnson AEW et al (2016) MIMIC-III, a freely accessible critical care database. Scientif Data 3:160035CrossRefGoogle Scholar
  18. 18.
    Lee J, Ribey E, Wallace JR (2016) A web-based data visualization tool for the MIMIC-II database. BMC Med Informat Decision Making 16:15. http://www.ncbi.nlm.nih.gov/pubmed/26846781%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4743095
  19. 19.
    Lubitz SA, Ellinor PT (2015) Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm Official J Heart Rhythm Soc 12(5):1062–1070. http://www.sciencedirect.com/science/article/pii/S1547527115000405CrossRefGoogle Scholar
  20. 20.
    McGregor C (2013) Big Data in neonatal intensive care. Computer 46(6):54–59CrossRefGoogle Scholar
  21. 21.
    Nath C, Albaghdadi MS, Jonnalagadda SR (2016) A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One 11(4)CrossRefGoogle Scholar
  22. 22.
    Nouhravesh N et al (2016) Analyses of more than 60,000 exomes questions the role of numerous genes previously associated with dilated cardiomyopathy. Mol Genetic Genom Med 4(6):617–623CrossRefGoogle Scholar
  23. 23.
    Saeed M et al (2011) Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database. Crit Care Med 39(5):952–960CrossRefGoogle Scholar
  24. 24.
    Sahoo SS et al (2014) Heart beats in the cloud: distributed analysis of electrophysiological “Big Data” using cloud computing for epilepsy clinical research. J Am Med Informat Assoc JAMIA 21(2):263–271. http://jamia.oxfordjournals.org/content/21/2/263.abstractCrossRefGoogle Scholar
  25. 25.
    Sahoo SS et al (2016) NeuroPigPen: a scalable toolkit for processing electrophysiological signal data in neuroscience applications using apache pig. Front Neuroinformat 10:18. http://journal.frontiersin.org/article/10.3389/fninf.2016.00018
  26. 26.
    Sheynkman GM et al (2014) Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations. BMC Genom 15(1):703. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4158061&tool=pmcentrez&rendertype=abstract
  27. 27.
    Bernabeu MO et al (2009) CHASTE: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos Trans Ser A Math Phys Eng Sci 367(1895):1907–30. http://www.ncbi.nlm.nih.gov/pubmed/19380318
  28. 28.
    Cooper J, Scharm M, Mirams GR (2016) The cardiac electrophysiology web lab. Biophys J 110(2):292–300CrossRefGoogle Scholar
  29. 29.
    Soulakis ND et al (2015) Visualizing collaborative electronic health record usage for hospitalized patients with heart failure. J Am Med Inform Assoc 22(2):299–311CrossRefGoogle Scholar
  30. 30.
    Chouvarda I et al (2016) Clinical flows and decision support systems for coordinated and integrated care in COPD. In: 3rd IEEE EMBS international conference on biomedical and health informatics, BHI, pp 477–480Google Scholar
  31. 31.
    Beredimas N et al (2015) A reusable ontology for primitive and complex HL7 FHIR data types. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2547–2550. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7318911. Accessed 11 Dec 2015
  32. 32.
    Bruining N et al (2014) Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives by the task force of the e-Cardiology working group of European society of cardiology. European J Prevent Cardiol 21(2 suppl):4–13. http://cpr.sagepub.com/content/21/2_suppl/4%5Cnhttp://cpr.sagepub.com/content/21/2_suppl/4.full.pdf%5Cnhttp://cpr.sagepub.com/content/21/2_suppl/4.short%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/25354948CrossRefGoogle Scholar
  33. 33.
    Agneeswaran VS et al (2013) Real-time analytics for the healthcare industry: arrhythmia detection. Big Data 1(3) 176–182. http://online.liebertpub.com/doi/abs/10.1089/big.2013.0018CrossRefGoogle Scholar
  34. 34.
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, SH (2000) PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for complex physiologic signals. Circulation 101(23):215–220Google Scholar
  35. 35.
    Blount M et al (2010) Real-time analysis for intensive care: development and deployment of the artemis analytic system. IEEE Eng Med Biol Mag Quarter Mag Eng Med Biol Soc 29(2):110–118. http://www.ncbi.nlm.nih.gov/pubmed/20659848CrossRefGoogle Scholar
  36. 36.
    Arney D et al (2012) Simulation of medical device network performance and requirements for an integrated clinical environment. Biomedical Instrumentation & Technology/Association for the Advancement of Medical Instrumentation 46(4).  https://doi.org/10.2345/0899-8205-46.4.308. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810397/CrossRefGoogle Scholar
  37. 37.
    Chytas A et al (2016). Ineffective efforts in ICU assisted ventilation: feature extraction and analysis platform. In: Iliadis L, Maglogiannis I (eds.) Artificial intelligence applications and innovations: 12th IFIP WG 12.5 international conference and workshops, AIAI 2016, Thessaloniki, Greece, September 16–18, 2016, Proceedings. Cham: Springer International Publishing, pp. 642–650. http://dx.doi.org/10.1007/978-3-319-44944-9_57Google Scholar
  38. 38.
    Vaporidi K et al (2016) Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensiv Care Med 1–8. http://dx.doi.org/10.1007/s00134-016-4593-z

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of Computing, Medical Informatics & Biomedical-Imaging Technologies, The Medical SchoolAristotle UniversityThessalonikiGreece
  2. 2.Deptartment of Industrial Engineering & Management Sciences, Department of Electrical Engineering & Computer Science, McCormick School of Engineering and Applied SciencesNorthwestern UniversityEvanstonUSA
  3. 3.Center for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece

Personalised recommendations