Advertisement

Complex and Composite Graphical Symbol Recognition and Retrieval: A Quick Review

  • K. C. SantoshEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 709)

Abstract

One of the key difficulties in graphics recognition domain is to work on complex and composite symbol recognition, retrieval and spotting. This paper covers a quick view on complex and composite symbol recognition, which is inspired by real-world industrial problem. Considering it as a pattern recognition problem, three different approaches: statistical, structural and syntactic are taken into account. It includes fundamental concepts or techniques and research standpoints or directions derived by a real-world application.

Keywords

Symbol recognition Complex and composite symbols Statistical Structural and syntactic approaches Document processing 

References

  1. 1.
    Adam, S., Ogier, J.M., Cariou, C., Mullot, R., Labiche, J., Gardes, J.: Symbol and character recognition: application to engineering drawings. Int. J. Doc. Anal. Recogn. 3(2), 89–101 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ah-Soon, C., Tombre, K.: Architectural symbol recognition using a network of constraints. Pattern Recogn. Lett. 22(2), 231–248 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Almazán, J., Fornés, A., Valveny, E.: A non-rigid appearance model for shape description and recognition. Pattern Recogn. 45(9), 3105–3113 (2012)CrossRefGoogle Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Bunke, H., Wang, P.S.P. (eds.): Handbook of Character Recognition and Document Image Analysis. World Scientific, Singapore (1997)Google Scholar
  6. 6.
    Chaudhuri, B.B., Garain, U.: An approach for recognition and interpretation of mathematical expressions in printed document. Pattern Anal. Appl. 3(2), 120–131 (2000)CrossRefGoogle Scholar
  7. 7.
    Chhabra, A.K.: Graphic symbol recognition: an overview. In: Proceedings of 2nd International Workshop on Graphics Recognition, Nancy, France, pp. 244–252, August 1997Google Scholar
  8. 8.
    Claus, V., Ehrig, H., Rozenberg, G. (eds.): Graph-Grammars and Their Applications to Computer Science and Biology. LNCS, vol. 73. Springer, Heidelberg (1979)Google Scholar
  9. 9.
    Cordella, L.P., Foggia, P., Genna, R., Vento, M.: Prototyping structural descriptions: an inductive learning approach. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SSPR /SPR 1998. LNCS, vol. 1451, pp. 339–348. Springer, Heidelberg (1998). doi: 10.1007/BFb0033252 CrossRefGoogle Scholar
  10. 10.
    Cordella, L.P., Vento, M.: Symbol and shape recognition. In: Proceedings of 3rd International Workshop on Graphics Recognition, Jaipur, India, pp. 179–186, September 1999Google Scholar
  11. 11.
    Cordella, L.P., Vento, M.: Symbol recognition in documents: a collection of techniques? Int. J. Doc. Anal. Recogn. 3(2), 73–88 (2000)CrossRefGoogle Scholar
  12. 12.
    Deans, S.R.: Applications of the Radon Transform. Wiley Interscience Publications, New York (1983)zbMATHGoogle Scholar
  13. 13.
    Delalandre, M., Ramel, J.-Y., Sidere, N.: A semi-automatic groundtruthing framework for performance evaluation of symbol recognition and spotting systems. In: Kwon, Y.-B., Ogier, J.-M. (eds.) GREC 2011. LNCS, vol. 7423, pp. 163–172. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36824-0_16 CrossRefGoogle Scholar
  14. 14.
    Delalandre, M., Valveny, E., Lladós, J.: Performance evaluation of symbol recognition and spotting systems: an overview. In: Kise, K., Sako, H. (eds.) Proceedings of International Workshop on Document Analysis Systems, pp. 497–505. IEEE Computer Society (2008)Google Scholar
  15. 15.
    Delalandre, M., Valveny, E., Pridmore, T., Karatzas, D.: Generation of synthetic documents for performance evaluation of symbol recognition and spotting systems. Int. J. Doc. Anal. Recogn. 13(3), 187–207 (2010)CrossRefGoogle Scholar
  16. 16.
    Devaux, P.M., Lysak, D.B., Kasturi, R.: A complete system for the intelligent interpretation of engineering drawings. Int. J. Doc. Anal. Recogn. 2(2/3), 120–131 (1999)CrossRefGoogle Scholar
  17. 17.
    Doermann, D., Tombre, K.: Handbook of Document Image Processing and Recognition. Springer, London (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Doermann, D.S.: An introduction to vectorization and segmentation. In: Tombre, K., Chhabra, A.K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 1–8. Springer, Heidelberg (1998). doi: 10.1007/3-540-64381-8_34 CrossRefGoogle Scholar
  19. 19.
    Dori, D., Pnueli, A.: The grammar of dimensions in machine drawings. Computer Vision, Graphics and Image Processing 42, 1–18 (1988)CrossRefGoogle Scholar
  20. 20.
    Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for analysis of architectural drawings. Int. J. Doc. Anal. Recogn. 3(2), 102–116 (2000)CrossRefGoogle Scholar
  21. 21.
    Escalera, S., Fornés, A., Pujol, O., Lladós, J., Radeva, P.: Circular blurred shape model for multiclass symbol recognition. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(2), 497–506 (2011)CrossRefGoogle Scholar
  22. 22.
    Feng, G., Viard-Gaudin, C., Sun, Z.: On-line hand-drawn electric circuit diagram recognition using 2D dynamic programming. Pattern Recogn. 42(12), 3215–3223 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Flasiński, M.: Characteristics of edNLC-graph grammar for syntactic pattern recognition. Comput. Vis. Graph. Image Process. 47, 1–21 (1989)CrossRefGoogle Scholar
  24. 24.
    Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)CrossRefGoogle Scholar
  25. 25.
    FRESH: Final report on symbol recognition with evaluation of performances. http://www.aero-scratch.net/fresh.html. Deliverable 2.4.2.-FP6-516059
  26. 26.
    GREC: International symbol recognition contest at GREC2003 (2003). http://www.cvc.uab.es/grec2003/SymRecContest/
  27. 27.
    Ha, D.T.: Sparse representation over learned dictionary for document analysis. Ph.D. thesis, LORIA, Université de Lorraine, France (2014)Google Scholar
  28. 28.
    Heutte, L., Nosary, A., Paquet, T.: A multiple agent architecture for handwritten text recognition. Pattern Recogn. 37(4), 665–674 (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  30. 30.
    Kasturi, R., Raman, R., Chennubhotla, C., O’Gorman, L.: document image analysis: an overview of techniques for graphics recognition. In: Pre-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Murray Hill, NJ (USA), pp. 192–230 (1990)Google Scholar
  31. 31.
    Kasturi, R., O’Gorman, L., Govindaraju, V.: Document image analysis: a primer. Charact. Recogn. 27(1), 3–22 (2002)Google Scholar
  32. 32.
    Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using Zernike moments. Sig. Process. Image Commun. 16(1–2), 95–102 (2000)CrossRefGoogle Scholar
  33. 33.
    Lamiroy, B., Lopresti, D.P.: An open architecture for end-to-end document analysis benchmarking. In: International Conference on Document Analysis and Recognition, pp. 42–47 (2011)Google Scholar
  34. 34.
    Lamiroy, B., Lopresti, D.P., Korth, H.F., Heflin, J.: How carefully designed open resource sharing can help and expand document analysis research. In: Document Recognition and Retrieval XVIII, Part of the IS&T-SPIE Electronic Imaging SymposiumGoogle Scholar
  35. 35.
    Lladós, J., Martí, E., Villanueva, J.J.: Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)CrossRefGoogle Scholar
  36. 36.
    Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition: current advances and perspectives. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 104–128. Springer, Heidelberg (2002). doi: 10.1007/3-540-45868-9_9 CrossRefGoogle Scholar
  37. 37.
    Lladós, J., Rusiñol, M.: Graphics Recognition Techniques, pp. 489–521. Springer, London (2014)Google Scholar
  38. 38.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  39. 39.
    Luqman, M.M.: fuzzy multilevel graph embedding for recognition, indexing and retrieval of graphic document images. Ph.D. thesis, Francois Rabelais University of Tours France and Autonoma University of Barcelona Spain (2012)Google Scholar
  40. 40.
    Marshall, S.: Review of shape coding techniques. Image Vision Comput. 7(4), 281–294 (1989)CrossRefGoogle Scholar
  41. 41.
    Müller, S., Rigoll, G.: Engineering drawing database retrieval using statistical pattern spotting techniques. In: Proceedings of 3rd International Workshop on Graphics Recognition, Jaipur, India, pp. 219–226, September 1999Google Scholar
  42. 42.
    Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 38–62 (2000)CrossRefGoogle Scholar
  43. 43.
    Nayef, N.: Geomatric-based symbol spotting and retrieval in technical line drawings. Ph.D. thesis, University of Kaiserslautern, Germany (2012)Google Scholar
  44. 44.
    Okazaki, A., Kondo, T., Mori, K., Tsunekawa, S., Kawamoto, E.: An automatic circuit diagram reader with loop-structure-based symbol recognition. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 331–341 (1988)CrossRefGoogle Scholar
  45. 45.
    Qureshi, R.J., Ramel, J.-Y., Barret, D., Cardot, H.: Spotting symbols in line drawing images using graph representations. In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 91–103. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88188-9_10 CrossRefGoogle Scholar
  46. 46.
    Rebelo, A., Capela, G., Cardoso, J.S.: Optical recognition of music symbols: a comparative study. Int. J. Doc. Anal. Recogn. 13(1), 19–31 (2010)CrossRefGoogle Scholar
  47. 47.
    Rendek, J., Masini, G., Dosch, P., Tombre, K.: The search for genericity in graphics recognition applications: design issues of the Qgar software system. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 366–377. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28640-0_35 CrossRefGoogle Scholar
  48. 48.
    Rusiñol, M., Lladós, J.: A performance evaluation protocol for symbol spotting systems in terms of recognition and location indices. Int. J. Doc. Anal. Recogn. 12(2), 83–96 (2009)CrossRefGoogle Scholar
  49. 49.
    Rusiñol, M., Lladós, J.: Symbol Spotting in Digital Libraries: Focused Retrieval over Graphic-rich Document Collections. Springer, London (2010)CrossRefzbMATHGoogle Scholar
  50. 50.
    Salmon, J.P.: Reconnaissance de Symboles Complexes. Ph.D. thesis, Institut National Polytechnique de Lorraine (2008)Google Scholar
  51. 51.
    Samet, H., Soffer, A.: MARCO: map retrieval by content. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 783–798 (1996)CrossRefGoogle Scholar
  52. 52.
    Santosh, K.C.: Graphics recognition using spatial relations and shape analysis. Ph.D. thesis, INRIA - Institut National Polytechnique de Lorraine, Université de Lorraine, November 2011Google Scholar
  53. 53.
    Santosh, K.C., Lamiroy, B., Ropers, J.P.: Inductive logic programming for symbol recognition. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 1330–1334. IEEE Computer Society (2009)Google Scholar
  54. 54.
    K.C., S., Lamiroy, B., Wendling, L.: DTW for matching radon features: a pattern recognition and retrieval method. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 249–260. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23687-7_23 CrossRefGoogle Scholar
  55. 55.
    Santosh, K.C., Lamiroy, B., Wendling, L.: Spatio-structural symbol description with statistical feature add-on. In: Kwon, Y.-B., Ogier, J.-M. (eds.) GREC 2011. LNCS, vol. 7423, pp. 228–237. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36824-0_22 CrossRefGoogle Scholar
  56. 56.
    Santosh, K.C., Lamiroy, B., Wendling, L.: Symbol recognition using spatial relations. Pattern Recog. Lett. 33(3), 331–341 (2012)CrossRefGoogle Scholar
  57. 57.
    Santosh, K.C., Lamiroy, B., Wendling, L.: DTW-radon-based shape descriptor for pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 27(3), 1350008 (2013)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Santosh, K.C., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recogn. 17(1), 61–78 (2014)CrossRefGoogle Scholar
  59. 59.
    Santosh, K.C., Nattee, C., Lamiroy, B.: Relative positioning of stroke-based clustering: a new approach to online handwritten Devanagari character recognition. Int. J. Image Graph. 12(2), 25 (2012)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Santosh, K.C., Wendling, L.: Character recognition based on non-linear multi-projection profiles measure. Front. Comput. Sci. 9(5), 678–690 (2015)CrossRefGoogle Scholar
  61. 61.
    Santosh, K.C., Wendling, L., Lamiroy, B.: Using spatial relations for graphical symbol description. In: Proceedings of the IAPR International Conference on Pattern Recognition, pp. 2041–2044. IEEE Computer Society (2010)Google Scholar
  62. 62.
    Santosh, K.C., Wendling, L., Lamiroy, B.: BoR: Bag-of-Relations for symbol retrieval. Int. J. Pattern Recogn. Artif. Intell. 28(06), 1450017 (2014)CrossRefGoogle Scholar
  63. 63.
    Santosh, K., Wendling, L.: Graphical Symbol Recognition, pp. 1–22. Wiley, New York (2015)Google Scholar
  64. 64.
    Tabbone, S., Terrades, O.R.: An Overview of Symbol Recognition, pp. 523–551. Springer, London (2014)Google Scholar
  65. 65.
    Tabbone, S., Terrades, O.R., Barrat, S.: Histogram of radon transform. A useful descriptor for shape retrieval. In: Proceedings of the IAPR International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  66. 66.
    Tabbone, S., Wendling, L., Salmon, J.P.: A new shape descriptor defined on the radon transform. Comput. Vis. Image Underst. 102(1), 42–51 (2006)CrossRefGoogle Scholar
  67. 67.
    Tabbone, S., Wendling, L., Tombre, K.: Matching of graphical symbols in line-drawing images using angular signature information. Int. J. Doc. Anal. Recogn. 6(2), 115–125 (2003)CrossRefGoogle Scholar
  68. 68.
    Tabbone, S., Wendling, L., Zuwala, D.: A hybrid approach to detect graphical symbols in documents. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 342–353. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28640-0_33 CrossRefGoogle Scholar
  69. 69.
    Terrades, O.R., Tabbone, S., Valveny, E.: A review of shape descriptors for document analysis. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 227–231 (2007)Google Scholar
  70. 70.
    Tombre, K.: Analysis of engineering drawings: state of the art and challenges. In: Tombre, K., Chhabra, A.K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 257–264. Springer, Heidelberg (1998). doi: 10.1007/3-540-64381-8_54 CrossRefGoogle Scholar
  71. 71.
    Tombre, K.: Ten years of research in the analysis of graphics documents: achievements and open problems. In: Proceedings of 10th Portuguese Conference on Pattern Recognition, Lisbon, Portugal, pp. 11–17, March 1998Google Scholar
  72. 72.
    Tombre, K., Chhabra, A.K. (eds.): GREC 1997. LNCS, vol. 1389. Springer, Heidelberg (1998). doi: 10.1007/3-540-64381-8 Google Scholar
  73. 73.
    Tombre, K.: Graphics recognition: the last ten years and the next ten years. In: Proceedings of 6th IAPR International Workshop on Graphics Recognition, Hong Kong, pp. 422–426 (2005)Google Scholar
  74. 74.
    Tombre, K.: Graphics recognition - what else? In: Ogier, J.M., Liu, W., Lladós, J. (eds.) Graphics Recognition. Achievements, Challenges, and Evolution. LNCS, vol. 6020, pp. 272–277. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13728-0_25 CrossRefGoogle Scholar
  75. 75.
    Tombre, K., Lamiroy, B.: Pattern recognition methods for querying and browsing technical documentation. In: Progress in Pattern Recognition, Image Analysis and Applications, 13th Iberoamerican Congress on Pattern Recognition, pp. 504–518 (2008)Google Scholar
  76. 76.
    Tooley, M., Wyatt, D.: Aircraft electrical and electronic systems: principles, operation and maintenance. Butterworth-Heinemann, Oxford (2008). Aircraft engineering principles and practiceGoogle Scholar
  77. 77.
    Tsai, W.H., Fu, K.S.: Attributed grammar: a tool for combining syntactic and statistical approaches to pattern recognition. IEEE Trans. Syst. Man Cybern. 10(12), 873–885 (1980)CrossRefzbMATHGoogle Scholar
  78. 78.
    Valveny, E., Dosch, P.: Symbol recognition contest: a synthesis. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 368–385. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25977-0_34 CrossRefGoogle Scholar
  79. 79.
    Valveny, E., Martí, E.: A model for image generation and symbol recognition through the deformation of lineal shapes. Pattern Recogn. Lett. 24(15), 2857–2867 (2003)CrossRefGoogle Scholar
  80. 80.
    Valveny, E., Tabbone, S., Ramos, O., Philippot, E.: Performance characterization of shape descriptors for symbol representation. In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 278–287. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88188-9_26
  81. 81.
    Wendling, L., Tabbone, S.: A new way to detect arrows in line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 935–941 (2004)CrossRefGoogle Scholar
  82. 82.
    Yang, S.: Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 278–281 (2005)CrossRefGoogle Scholar
  83. 83.
    You, K.C., Fu, K.S.: Distorted shape recognition using attributed grammars and error-correcting techniques. Comput. Vis. Graph. Image Process. 13, 1–16 (1980)CrossRefGoogle Scholar
  84. 84.
    Yuen, P.C., Feng, G.C., Tang, Y.Y.: Printed chinese character similarity measurement using ring projection and distance transform. Int. J. Pattern Recogn. Artif. Intell. 12(2), 209–221 (1998)CrossRefGoogle Scholar
  85. 85.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)CrossRefGoogle Scholar
  86. 86.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic fourier descriptor. Sig. Process. Image Commun. 17(10), 825–848 (2002)CrossRefGoogle Scholar
  87. 87.
    Zhang, W., Wenyin, L., Zhang, K.: Symbol recognition with kernel density matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2020–2024 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of South DakotaVermillionUSA

Personalised recommendations