Advertisement

Passive Techniques of Digital Image Forgery Detection: Developments and Challenges

  • Santoshini Panda
  • Minati Mishra
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 443)

Abstract

Photographs and images play an important role in our lives but, in this technology era, equipped with powerful, low cost, and easy to use photo editing tools, people often forge photographs. This practice has posed a question mark on the trustworthiness of images necessitating separation of original images from the tampered lot. Because carefully edited and forged images are very hard to be distinguished from their genuine copies therefore, forgery detection and separation of the forged images from the innocent and genuine ones has become a challenging issue for image analysts. Image forgery detection procedures are generally classified into two broad categories; the active and the passive detection techniques. This paper presents a state of the art review of different passive forgery detection techniques those are proposed by different authors over time.

Keywords

Copy–move forgery Cloning Splicing Watermark 

References

  1. 1.
    Haouzia, A., Noumeir, R.: Methods for image authentication: a survey. Multimedia Tools Appl. 39(1), 1–46 (2008)CrossRefGoogle Scholar
  2. 2.
    Mishra, M., Adhikary, M.C.: Digital image tamper detection techniques—a comprehensive study. Int. J. Comput. Sci. Bus. Inform. 2(1), 1–12 (2013)Google Scholar
  3. 3.
    Kaur, H., Kaur, K.: A brief survey of different techniques for detecting copy–move forgery. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(4), 875–882 (2015)MathSciNetGoogle Scholar
  4. 4.
    Shah, H., Shinde, P., Kukreja J.: Retouching detection and steganalysis. Int. J. Eng. Innov. Res. 2(6), 487–490 (2013)Google Scholar
  5. 5.
    Gupta, A., Saxena, N., Vasistha, S.K.: Detecting copy-move forgery using DCT. Int. J. Sci. Res. Publ. 3(5), 1–4 (2013)Google Scholar
  6. 6.
    Mishra, M., Adhikary, M.C.: Detection of clones in digital images. Int. J. Comput. Sci. Bus. Inform. 9(1), 91–102 (2014)Google Scholar
  7. 7.
    Luo, W., Huang, J., Qiu, G.: Robust detection of region-duplication forgery in digital image. In: Proceedings of 18th International Conference on Pattern Recognition IEEE, vol. 4, pp. 746–749 (2006)Google Scholar
  8. 8.
    Mishra, M., Adhikary, M.C.: Robust detection of intensity variant clones in forged and JPEG compressed images. ANVESA 9(1), 48–60 (2014)Google Scholar
  9. 9.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop (2003)Google Scholar
  10. 10.
    Murali, S., Chittapur, G.B., Prabhakara H.S., Anami, B.S.: Comparison and analysis of photo image forgery detection techniques. IJCA 2 (6), 45–56 (2012)Google Scholar
  11. 11.
    Zhouchen, L.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Singh, R., Oberoi, A., Goel, N.: Copy–move forgery detection on digital images. Int. J. Comput. Appl 98 (9), (2014)Google Scholar
  13. 13.
    Zimba, M., Xingming, S.: DWT-PCA (EVD) based copy-move image forgery detection. Int. J. Digital Content Technol. Its Appl. 5(1), 251–258 (2011)CrossRefGoogle Scholar
  14. 14.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Zimba, M., Xingming, S.: Fast and robust image cloning detection using block characteristics of DWT coefficients. Int. J. Digital Content Technol. Its Appl. 5(7), 359–367 (2011)CrossRefGoogle Scholar
  16. 16.
    Mahdian, B., Saic, S.: Detection of copy–move forgery using a method based on blur moment invariants. Forensic Sci. Int. 171(2), 180–189 (2007)CrossRefGoogle Scholar
  17. 17.
    Junhong, Z.: Detection of copy-move forgery based on one improved LLE method. In: Advanced Computer Control (ICACC) IEEE, vol. 4, pp. 547–550 (2010)Google Scholar
  18. 18.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  19. 19.
    Kaur, R.: Copy–move forgery detection utilizing local binary patterns. Int. J. Emerg. Technol. Comput. Appl. Sci. 7(3), 290–294 (2013)Google Scholar
  20. 20.
    Muhammad, N., Muhammad, H., Muhammad, G., Bebis, G.: Copy–move forgery detection using dyadic wavelet transform. In: Eighth International Conference on IEEE Computer Graphics, Imaging and Visualization (CGIV), pp. 103–108 (2011)Google Scholar
  21. 21.
    Wang, X., Zhang, X., Li, Z., Wang, S.: A DWT-DCT based passive forensics method for copy-move attacks. In: 2011 Third International Conference on Multimedia Information Networking and Security, IEEE, pp. 304–308 (2011)Google Scholar
  22. 22.
    Zhang, J., Feng, Z., Su, Y.: A new approach for detecting copy–move forgery in digital images. In: 11th IEEE Singapore International Conference on IEEE Communication Systems, pp. 362–366 (2008)Google Scholar
  23. 23.
    Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighbourhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: IEEE International Conference on Multimedia and Expo, pp. 1750–1753 (2007)Google Scholar
  24. 24.
    Popescu, A, Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Technical Report TR2004-515, Department of Computer Science, Dartmouth College, pp. 1–1 (2004)Google Scholar
  25. 25.
    Amtullah, S., Koul, A.: Passive image forensic method to detect copy–move forgery in digital images. IOSR-JCE 16(2), 96–104 (2014)CrossRefGoogle Scholar
  26. 26.
    Shivakumar, B.L., Baboo L.D.S.S.: Detection of region duplication forgery in digital images using SURF. Int. J. Comput. Sci. Issues 8(4), (2011)Google Scholar
  27. 27.
    Prerna, C., Percy, G.J., Angaline, S., Thanga, B.I.: A key-point based copy–move forgery detection. Int. J. Adv. Inform. Sci. Technol. 12(12), 175–180 (2013)Google Scholar
  28. 28.
    Sagawa, R., Masuda, T., Ikeuchi, K.: Effective nearest neighbor search for aligning and merging range images, In: Fourth International Conference on IEEE 3-D Digital Imaging and Modeling, pp. 54–61 (2003)Google Scholar
  29. 29.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)CrossRefzbMATHGoogle Scholar
  30. 30.
    Huang, H., Guo, W., Zhang, Y.: Detection of copy–move forgery in digital images using SIFT algorithm. Comput. Intell. Ind. Appl. Pacific-Asia Workshop IEEE 2, 272–276 (2008)Google Scholar
  31. 31.
    Lowe, D.G.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  32. 32.
    Muhammad, N., Hussain, M., Muhammad, G., Bebis, G.: A non-intrusive method for copy-move forgery detection. In: International Symposium on Visual Computing. Springer, Berlin, pp. 516–525 (2011)Google Scholar
  33. 33.
    Oommen, R.S., Jayamohan, M.: A hybrid copy–move forgery detection technique using regional similarity indices. Int. J. Comput. Sci. Inform. Technol. 7(4), 127–134 (2015)Google Scholar
  34. 34.
    Bayram, S., Sencar, T., Memon, N.: An efficient and robust method for detecting copy–move forgery. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1053−1056 (2009)Google Scholar
  35. 35.
    Solorio, S.B., Nandi, A.K.: Passive forensic method for detecting duplicated regions affected by reflection, rotation and scaling. In: 17th IEEE European Signal Processing Conference, pp. 824–828 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.P. G. Department of Information & Communication TechnologyFakir Mohan UniversityBalasoreIndia

Personalised recommendations