Skip to main content

Nucleic Acid-Based Aptasensors for Cancer Diagnostics: An Insight into Immobilisation Strategies

  • Chapter
  • First Online:
Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis

Abstract

Whilst antibodies remain the most popular and trusted choice for molecular recognition, they may still pose challenges for biosensing applications due to their high cost, low reproducibility and large size. One long championed alternative to antibodies are nucleic acid aptamers. Nucleic acid aptamers are single-stranded DNA or RNA sequences that can bind to a target with high affinity and specificity. Nucleic acid aptamers, due to their varied advantages, have been gaining significant importance in both diagnostic and theranostic applications. Among various diseases, early diagnosis of cancer is one of the biggest concerns for patients and healthcare professionals worldwide. For the case of cancer, it is crucial to be able to deliver treatment whilst monitoring therapy response in real time. This is required in order to prevent over- or under-dosing the patients whilst treatment occurs. One of the most commonly used techniques for cancer diagnosis is to detect biomarkers (cancer-related proteins, small molecules and cancer cells) found in body fluids specific for a particular cancer type. In this chapter, we present a discussion on the use of aptamer-based biosensors (termed as “aptasensors”) for cancer diagnosis. The development of aptamer-based biosensor devices is an interdisciplinary field and relies on very distinct aspects such as characterisation of bio-recognition probes with their respective analytes, immobilisation onto electrode surfaces, development of anti-fouling surface chemistries, sensor design and fabrication and microfluidics. Special attention is given to different types of surface chemistry used for the development of simple, sensitive and cost-effective aptasensors. Utilisation of aptamers is an encouraging tool for the development of point-of-care (PoC) biosensors for the detection of different types of cancer. In the view of unparalleled merits of aptamers, recent achievements and future perspectives of the applications of aptamers are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrade JD (ed) (1985) Surface and interfacial aspects of biomedical polymers: volume 1—surface chemistry and physics. Plenum Press, New York

    Google Scholar 

  • Asavapiriyanont S, Chandler G, Gunawardena G, Pletcher D (1984) The electrodeposition of polypyrrole films from aqueous solutions. J Electroanal Chem Interfacial Electrochem 1:229–244

    Article  Google Scholar 

  • Azioune A, Siroti F, Tanguy J, Jouini M, Chehimi MM, Miksa B, Slomkowski S (2005) Interactions and conformational changes of human serum albumin at the surface of electrochemically synthesized thin polypyrrole films. Electrochim Acta 50:1661–1667

    Article  CAS  Google Scholar 

  • Bain CD, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J Am Chem Soc 111:7164–7175

    Article  CAS  Google Scholar 

  • Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  • Baird GS (2010) Where are all the aptamers? Am J Clin Pathol 134:529–531

    Article  PubMed  Google Scholar 

  • Baker JR (2009) Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program 2009:708–719

    Google Scholar 

  • Bañuls MJ, Puchades R, Maquieira Á (2013) Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review. Anal Chim Acta 777:1–16

    Article  PubMed  CAS  Google Scholar 

  • Boisen A, Dohn S, Keller SS, Schmid S, Tenje M (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74:036101

    Article  CAS  Google Scholar 

  • Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta 904:92–97

    Article  CAS  PubMed  Google Scholar 

  • Camillone N III, Eisenberger P, Leung T, Schwartz P, Scoles G, Poirier G, Tarlov M (1994) New monolayer phases of n-alkane thiols self-assembled on au (111): preparation, surface characterization, and imaging. J Chem Phys 101:11031–11036

    Article  CAS  Google Scholar 

  • Campuzano S, Pedrero M, Montemayor C, Fatás E, Pingarrón JM (2006) Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J Electroanal Chem 586:112–121

    Article  CAS  Google Scholar 

  • Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1–16

    Article  CAS  PubMed  Google Scholar 

  • Castillo G, Trnkova L, Hrdy R, Hianik T (2012) Impedimetric aptasensor for thrombin recognition based on CD support. Electroanalysis 24:1079–1087

    Article  CAS  Google Scholar 

  • Cavic BA, Thompson M (2002) Interfacial nucleic acid chemistry studied by acoustic shear wave propagation. Anal Chim Acta 469:101–113

    Article  CAS  Google Scholar 

  • Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466–1473

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Tian D, Gu J, Cui H (2011) A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Analyst 136:3244–3251

    Article  CAS  PubMed  Google Scholar 

  • Chebil S, Hafaiedh I, Sauriat-Dorizon H, Jaffrezic-Renault N, Errachid A, Ali Z, Korri-Youssoufi H (2010) Electrochemical detection of d-dimer as deep vein thrombosis marker using single-chain d-dimer antibody immobilized on functionalized polypyrrole. Biosens Bioelectron 26:736–742

    Article  CAS  PubMed  Google Scholar 

  • Chehimi MM, Abel ML, Perruchot C, Delamar M, Lascelles SF, Armes SP (1999) The determination of the surface energy of conducting polymers by inverse gas chromatography at infinite dilution. Synth Met 104:51–59

    Article  CAS  Google Scholar 

  • Chen X, Pan Y, Liu H, Bai X, Wang N, Zhang B (2016) Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosens Bioelectron 79:353–358

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Lee JH (2013) Role of magnetic Fe3O4 graphene oxide in chemiluminescent aptasensors capable of sensing tumor markers in human serum. Anal Methods 5:6964–6968

    Article  CAS  Google Scholar 

  • Chun L, Kim SE, Cho M, Choe WS, Nam J, Lee DW, Lee Y (2013) Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sensors Actuators B Chem 186:446–450

    Article  CAS  Google Scholar 

  • Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L (2011) Synthesis and characterization of lipid–polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding. Langmuir 27:10556–10561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce MV, Isla-Larrain MT, Demichelis SO, Segal-Eiras A, Gori JR, Price MR (2003) Tissue and serum MUC1 mucin detection in breast cancer patients. Breast Cancer Res Treat 81:195–207

    Article  CAS  PubMed  Google Scholar 

  • Darling S, Rosenbaum A, Wang Y, Sibener S (2002) Coexistence of the (23×√3) au (111) reconstruction and a striped phase self-assembled monolayer. Langmuir 18:7462–7468

    Article  CAS  Google Scholar 

  • Davis KA, Abrams B, Lin Y, Jayasena SD (1996) Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res 24:702–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du M, Yang T, Zhao C, Jiao K (2012) Electrochemical logic aptasensor based on graphene. Sensors Actuators B Chem 169:255–260

    Article  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503:115–163

    Article  CAS  Google Scholar 

  • Estelrich J, Quesada-Pérez M, Forcada J, Callejas-Fernández J (2014) Introductory aspects of soft nanoparticles. In: Callejas-Fernández J, Estelrich J, Quesada-Pérez M, Forcada J (eds) Soft nanoparticles for biomedical applications. Royal Society of Chemistry, Cambridge, pp 1–18

    Google Scholar 

  • Fang L, Lü Z, Wei H, Wang E (2008) An electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628:80–86

    Article  CAS  Google Scholar 

  • Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Article  CAS  PubMed  Google Scholar 

  • Finklea H (1996) Electrochemistry of organized monolayers of thiols and related molecules on electrodes. Electroanal Chem 19:110–335

    Google Scholar 

  • Gaidzik N, Westerlind U, Kunz H (2013) The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem Soc Rev 42:4421–4442

    Article  CAS  PubMed  Google Scholar 

  • Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    Article  CAS  PubMed  Google Scholar 

  • Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408–17410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddour N, Cosnier S, Gondran C (2005) Electrogeneration of a poly (pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. J Am Chem Soc 127:5752–5753

    Article  CAS  PubMed  Google Scholar 

  • Haensch C, Hoeppener S, Schubert US (2010) Chemical modification of self-assembled silane based monolayers by surface reactions. Chem Soc Rev 39:2323–2334

    Article  CAS  PubMed  Google Scholar 

  • Han DH, Lee HJ, Park SM (2005) Electrochemistry of conductive polymers XXXV: electrical and morphological characteristics of polypyrrole films prepared in aqueous media studied by current sensing atomic force microscopy. Electrochim Acta 50:3085–3092

    Article  CAS  Google Scholar 

  • Hayat A, Sassolas A, Marty JL, Radi AE (2013) Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 103:14–19

    Article  CAS  PubMed  Google Scholar 

  • He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4:2054–2059

    Article  CAS  PubMed  Google Scholar 

  • Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  • Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924

    Article  CAS  PubMed  Google Scholar 

  • Hett A (2004) Nanotechnology: small matter, many unknowns, Risk perception series. Swiss Reinsurance Company, Zürich

    Google Scholar 

  • Hianik T, Wang J (2009) Electrochemical aptasensors–recent achievements and perspectives. Electroanalysis 21:1223–1235

    Article  CAS  Google Scholar 

  • Hong HS, Kim SJ, Lee KS (1999) Long-term oxidation characteristics of oxygen-added modified Zircaloy-4 in 360° C water. J Nucl Mater 273:177–181

    Article  CAS  Google Scholar 

  • Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  • Hough CD, Sherman-Baust CA, Pizer ES, Montz F, Im DD, Rosenshein NB, Cho KR, Riggins GJ, Morin PJ (2000) Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 60:6281–6287

    CAS  PubMed  Google Scholar 

  • Hu CMJ, Kaushal S, Cao HST, Aryal S, Sartor M, Esener S, Bouvet M, Zhang L (2010) Half-antibody functionalized lipid−polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 7:914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Li L, Guo L (2015) The sandwich-type aptasensor based on gold nanoparticles/DNA/magnetic beads for detection of cancer biomarker protein AGR2. Sensors Actuators B Chem 209:846–852

    Article  CAS  Google Scholar 

  • Huang J, Luo X, Lee I, Hu Y, Cui XT, Yun M (2011) Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosens Bioelectron 30:306–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19:1309–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, Marandi M, Tamm T, Tamm J (2005) Comparative study of the behavior of anions in polypyrrole films. Electrochim Acta 50:1523–1528

    Article  CAS  Google Scholar 

  • Jolly P, Formisano N, Estrela P (2015a) DNA aptamer-based detection of prostate cancer. Chem Pap 69:77–89

    Article  CAS  Google Scholar 

  • Jolly P, Formisano N, Tkáč J, Kasák P, Frost CG, Estrela P (2015b) Label-free impedimetric aptasensor with antifouling surface chemistry: a prostate specific antigen case study. Sensors Actuators B Chem 209:306–312

    Article  CAS  Google Scholar 

  • Jolly P, Damborsky P, Madaboosi N, Soares RR, Chu V, Conde JP, Katrlik J, Estrela P (2016a) DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosens Bioelectron 79:313–319

    Article  CAS  PubMed  Google Scholar 

  • Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016b) Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195

    Article  CAS  PubMed  Google Scholar 

  • Jolly P, Miodek A, Yang DK, Chen LC, Lloyd MD, Estrela P (2016c) Electro-engineered polymeric films for the development of sensitive aptasensors for prostate cancer marker detection. ACS Sens 1:1308–1314

    Article  CAS  Google Scholar 

  • Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner AP, Tiwari A (2014) Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem 86:4956–4960

    Article  CAS  PubMed  Google Scholar 

  • Keighley SD, Li P, Estrela P, Migliorato P (2008) Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens Bioelectron 23:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Keum JW, Bermudez H (2009) Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun (45):7036–7038.

    Google Scholar 

  • Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506

    Article  CAS  Google Scholar 

  • Kiilerich-Pedersen K, Poulsen CR, Daprà J, Christiansen NO, Rozlosnik N (2011) Polymer based biosensors for pathogen diagnostics. In: Somerset V (ed) Environmental biosensors. INTECH, Rijeka, pp 193–212

    Google Scholar 

  • Kimoto M, Yamashige R, Matsunaga KI, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  • Kronina VV, Wirth HJ, Hearn MT (1999) Characterisation by immobilised metal ion affinity chromatographic procedures of the binding behaviour of several synthetic peptides designed to have high affinity for Cu (II) ions. J Chromatogr A 852:261–272

    Article  CAS  PubMed  Google Scholar 

  • Kwon OS, Park SJ, Hong JY, Han AR, Lee JS, Lee JS, JH O, Jang J (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6:1486–1493

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim W, Cho S, Jun J, Cho KH, Jang J (2016) Multidimensional hybrid conductive nanoplate-based aptasensor for platelet-derived growth factor detection. J Mater Chem B 4:4447–4454

    Article  CAS  Google Scholar 

  • Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41

    Article  Google Scholar 

  • Li Y, Deng L, Deng C, Nie Z, Yang M, Si S (2012) Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode. Talanta 99:637–642

    Article  CAS  PubMed  Google Scholar 

  • Li C, Meng Y, Wang S, Qian M, Wang J, Lu W, Huang R (2015) Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano 9:12096–12103

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Randall BA, Alba NA, Cui XT (2008) Conducting polymer-based impedimetric aptamer biosensor for in situ detection. Anal Bioanal Chem 392:861–864

    Article  CAS  PubMed  Google Scholar 

  • Liss M, Petersen B, Wolf H, Prohaska E (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim Acta 178:163–170

    Article  CAS  Google Scholar 

  • Liu X, Ren J, Su L, Gao X, Tang Y, Ma T, Zhu L, Li J (2017) Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens Bioelectron 87:203–208

    Article  CAS  PubMed  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  PubMed  Google Scholar 

  • Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6:21859–21873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Yin H, Xu L, Xu Z, Kuang H, Wang L, Xu C (2013) Femtogram ultrasensitive aptasensor for the detection of OchratoxinA. Biosens Bioelectron 42:545–549

    Article  CAS  PubMed  Google Scholar 

  • Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci 90:3745–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeshima A, Miyagi A, Hirai T, Nakajima T (1997) Mucin-producing adenocarcinoma of the lung, with special reference to goblet cell type adenocarcinoma: Immunohistochemical observation and Ki-ras gene mutation. Pathol Int 47:454–460

    Article  CAS  PubMed  Google Scholar 

  • Mairal T, Özalp VC, Sánchez PL, Mir M, Katakis I, O’Sullivan CK (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007

    Article  CAS  PubMed  Google Scholar 

  • Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW (2016) MIPs and aptamers for recognition of proteins in biomimetic sensing. Biosensors 6:35

    Article  PubMed Central  Google Scholar 

  • Miodek A, Regan EM, Bhalla N, Hopkins NA, Goodchild SA, Estrela P (2015) Optimisation and characterisation of anti-fouling ternary SAM layers for impedance-based aptasensors. Sensors 15:25015–25032

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz MAH, Rauf S, Catanante G, Nawaz MH, Nunes G, Marty JL, Hayat A (2016) One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16:1651

    Article  PubMed Central  CAS  Google Scholar 

  • Ostatná V, Vaisocherová H, Homola J, Hianik T (2008) Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Anal Bioanal Chem 391:1861–1869

    Article  PubMed  CAS  Google Scholar 

  • Pasquardini L, Pancheri L, Potrich C, Ferri A, Piemonte C, Lunelli L, Napione L, Comunanza V, Alvaro M, Vanzetti L (2015) SPAD aptasensor for the detection of circulating protein biomarkers. Biosens Bioelectron 68:500–507

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Zhang L, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomaterials 30:2132–2148

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar N, Arora K, Singh SP, Singh H, Malhotra BD (2007) DNA entrapped polypyrrole–polyvinyl sulfonate film for application to electrochemical biosensor. Anal Biochem 366:71–79

    Article  CAS  PubMed  Google Scholar 

  • Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sensors Actuators B Chem 220:1145–1151

    Article  CAS  Google Scholar 

  • Radi AE (2011) Electrochemical aptamer-based biosensors: recent advances and perspectives. Int J Electrochem 2011:863196

    Article  CAS  Google Scholar 

  • Radi AE, Acero Sánchez JL, Baldrich E, O'Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124

    Article  CAS  PubMed  Google Scholar 

  • Rahi A, Sattarahmady N, Heli H (2016) Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 156:218–224

    Article  PubMed  CAS  Google Scholar 

  • Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51:6025–6037

    Article  CAS  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  PubMed  Google Scholar 

  • Rodrıgez LMT, Billon M, Roget A, Bidan G (2002) Electrosynthesis of a biotinylated polypyrrole film and study of the avidin recognition by QCM. J Electroanal Chem 523:70–78

    Article  Google Scholar 

  • Sagiv J (1980) Organized monolayers by adsorption 1: formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92–98

    Article  CAS  Google Scholar 

  • Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851

    Article  CAS  PubMed  Google Scholar 

  • Savory N, Abe K, Sode K, Ikebukuro K (2010) Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Biosens Bioelectron 26:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–257

    Article  CAS  Google Scholar 

  • Sharma R, Agrawal VV, Sharma P, Varshney R, Sinha R, Malhotra B (2012) Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. J Phys Conf Ser 358:012001

    Article  CAS  Google Scholar 

  • Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC (2004) Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 64:4783–4789

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Jha P, Singh V, Sinha K, Hussain S, Singh MK, Das P (2016) A quantum dot–MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr Biol 8:1040–1048

    Article  CAS  Google Scholar 

  • Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  • Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham M (2015) Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron 68:49–54

    Article  CAS  PubMed  Google Scholar 

  • Stora T, Hovius R, Dienes Z, Pachoud M, Vogel H (1997) Metal ion trace detection by a chelator-modified gold electrode: a comparison of surface to bulk affinity. Langmuir 13:5211–5214

    Article  CAS  Google Scholar 

  • Su S, Nutiu R, Filipe CD, Li Y, Pelton R (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23:1300–1302

    Article  CAS  PubMed  Google Scholar 

  • Su M, Ge L, Kong Q, Zheng X, Ge S, Li N, Yu J, Yan M (2015) Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 63:232–239

    Article  CAS  PubMed  Google Scholar 

  • Sylvia P, Brehm SO, Hoch HJA (1975) DNA-binding proteins in human serum. Biochem Biophys Res Commun 63:24–31

    Article  Google Scholar 

  • Tahmasebi F, Noorbakhsh A (2016) Sensitive electrochemical prostate specific antigen aptasensor: effect of carboxylic acid functionalized carbon nanotube and glutaraldehyde linker. Electroanalysis 28:1134–1145

    Article  CAS  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Tzouvadaki I, Jolly P, Lu X, Ingebrandt S, De Micheli G, Estrela P, Carrara S (2016) Label-free ultrasensitive memristive aptasensor. Nano Lett 16:4472–4476

    Article  CAS  PubMed  Google Scholar 

  • Ueda E, Gout P, Morganti L (2003) Current and prospective applications of metal ion–protein binding. J Chromatogr A 988:1–23

    Article  CAS  PubMed  Google Scholar 

  • Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  PubMed  Google Scholar 

  • Vance SA, Sandros MG (2014) Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci Rep 4:5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, Yao J, Chen F, Chen G (2004) Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A 68:411–422

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Ma W, Chen W, Liu L, Ma W, Zhu Y, Xu L, Kuang H, Xu C (2011) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron 26:3059–3062

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yu J, Gui R, Jin H, Xia Y (2016) Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron 79:136–149

    Article  CAS  PubMed  Google Scholar 

  • Weidlich C, Mangold KM, Jüttner K (2005) EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes. Electrochim Acta 50:1547–1552

    Article  CAS  Google Scholar 

  • Wu J, Campuzano S, Halford C, Haake DA, Wang J (2010) Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification. Anal Chem 82:8830–8837

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183:2655–2675

    Article  CAS  Google Scholar 

  • Xie Q, Tan Y, Guo Q, Wang K, Yuan B, Wan J, Zhao X (2014) A fluorescent aptasensor for sensitive detection of human hepatocellular carcinoma SMMC-7721 cells based on graphene oxide. Anal Methods 6:6809–6814

    Article  CAS  Google Scholar 

  • Xu H, Gorgy K, Gondran C, Le Goff A, Spinelli N, Lopez C, Defrancq E, Cosnier S (2013) Label-free impedimetric thrombin sensor based on poly (pyrrole-nitrilotriacetic acid)-aptamer film. Biosens Bioelectron 41:90–95

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Sun G, Liu F, Lu J, Yu J, Song X (2013) An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Anal Chim Acta 798:33–39

    Article  CAS  PubMed  Google Scholar 

  • Yang DK, Chen LC, Lee MY, Hsu CH, Chen CS (2014) Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX. Biosens Bioelectron 62:106–112

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Shi H, He X, Wang K, He D, Yan LA, Xu F, Lei Y, Tang J, Yu Y (2015) Iodide-responsive Cu–Au nanoparticle-based colorimetric platform for ultrasensitive detection of target cancer cells. Anal Chem 87:7141–7147

    Article  CAS  PubMed  Google Scholar 

  • Yeh FY, Liu TY, Tseng IH, Yang CW, LC L, Lin CS (2014) Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection. Biosens Bioelectron 61:336–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yang W, Wang J, Yang C, Yang F, Yang X (2009) A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta 78:1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Xie M, Zhou B, Hua Y, Yan Z, Liu H, Guo LN, Wu B, Huang B (2013) A new strategy based on aptasensor to time-resolved fluorescence assay for adenosine deaminase activity. Biosens Bioelectron 41:123–128

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  • Zhao S, Ma W, Xu L, Wu X, Kuang H, Wang L, Xu C (2015) Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosens Bioelectron 68:593–597

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Chandra P, Shim YB (2012) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal Chem 85:1058–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

PJ was funded by the European Commission FP7 Programme through the Marie Curie Initial Training Network PROSENSE (Grant No. 317420, 2012–2016). MRB was funded by FAPESP (process number 2013/26133-7). SU was funded by the UK EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies. SKA was funded by the European Commission’s Horizon 2020 Programme through a Marie Skłodowska-Curie Individual Fellowship (Grant No. 655176). MM and PE acknowledge support from FAPESP and the University of Bath through the SPRINT program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawan Jolly or Pedro Estrela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jolly, P., Batistuti, M.R., Ustuner, S., Mulato, M., Arya, S.K., Estrela, P. (2017). Nucleic Acid-Based Aptasensors for Cancer Diagnostics: An Insight into Immobilisation Strategies. In: Chandra, P., Tan, Y., Singh, S. (eds) Next Generation Point-of-care Biomedical Sensors Technologies for Cancer Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4726-8_9

Download citation

Publish with us

Policies and ethics