• Heena Rekhi
  • Ripneel Kaur
  • Ashok Kumar Malik


The phenomenon of luminescence has been recognized for an extensive moment in natural world, being reflected since ancient times in literature. Electromagnetic radiation produces while a chemical reaction gives a product in excited state which either donates or luminescence its energy to an another molecule. Luminol chemiluminescence (LCL) is another class consisting of qualitative and quantitative analysis of micro- or macromolecules such as DNA, RNA, proteins, and carbohydrates and ecological monitoring as biosensors for biological tracers in the pharmaceutical trade for cellular kind or in immunoassays. The potentials offered by analytical technique-based chemiluminescence have been discussed. Instrumentation simplicity, low detection limit, and an intrinsic influence of application to an enormous number of fluorophores broaden the scope of this area. This chapter includes a detailed account of chemiluminescence along with its reaction in different phases and analytical applications and as a detection technique.


Chemiluminescence Luminol Detection technique Applications Luminescence 


  1. Ahlberg E, Hammerich O, Parker VD (1981) Electro-transfer reactions accompanied by large structural changes 1. Lucigenin-10,10-dimethyl-9,9 –biacridylidene redox system. J Am Chem Soc 103:844–849CrossRefGoogle Scholar
  2. Amjadi M, Manzoori JL, Hallaj T (2014) Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin 153:73–78CrossRefGoogle Scholar
  3. Ariga T, Imura Y, Suzuki M, Yoshimura E (2016) Determination of ferric iron chelators by high-performance liquid chromatography using luminol chemiluminescence detection. J Chromatogr B 1014:75–82CrossRefGoogle Scholar
  4. Barni F, Lewis SW, Berti A, Miskelly GM, Lago G (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913CrossRefPubMedGoogle Scholar
  5. Bi S, Zhou H, Zhang SS (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens Bioelectron 24:2961–2966CrossRefPubMedGoogle Scholar
  6. Bulgakov R, Galimov D, Kinzyabaeva Z (2009) Chemiluminescence produced by oxidation of fullerene hydride C60H36 with oxygen in solution. Russ Chem Bull 58:857–858CrossRefGoogle Scholar
  7. Cao W, Liu J, Yang X, Wang E (2002) New technique for capillary electrophoresis directly coupled with end-column electrochemiluminescence detection. Electrophoresis 23:3683–3691CrossRefPubMedGoogle Scholar
  8. Chen H, Lin L, Lin Z, Lu C, Guo G, Lin JM (2011) Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate-hydrogen peroxide chemiluminescent reaction. Analyst 136:1957–1964CrossRefPubMedGoogle Scholar
  9. Christenson MA, Dyke KV, Dyke CV, Woodfork K (2002) Luminescence biotechnology: instruments and applications. CRC Press, Boca Raton, p 469Google Scholar
  10. Creton R, Jaffe LF (2001) Chemiluminescence microscopy as a tool in biomedical research. BioTechniques 31:1098–1105PubMedCrossRefGoogle Scholar
  11. Cui H, Shi MJ, Meng R, Zhou J, Lai CZ, Lin XQ (2004) Effect of pH on inhibition and enhancement of luminol-H2O2-Co2+ chemiluminescence by phenolic compounds and amino acids. J Photochem Photobiol 79:233–241CrossRefGoogle Scholar
  12. Cui H, Zhang H, Shi MJ, Wang W, Dong YP, Guo JZ (2007) Electrogenerated chemiluminescence of lucigenin in ethanol solution at a polycrystalline gold electrode. Electroanalysis 19:1703–1710CrossRefGoogle Scholar
  13. Dong YP, Zhoua Y, Wang J, Zhu JJ (2016) Electrogenerated chemiluminescence resonance energy transfer between lucigenin and CdSe quantum dots in the presence of bromide and its sensing application. Sensors Actuators B Chem 226:444–449CrossRefGoogle Scholar
  14. Dunlea EJ, Herndon SC, Nelson DD, Volkamer RM, Martini FS, Sheehy PM, Zahniser MS, Shorter JH, Wormhoudt JC, Lamb BK, Allwine EJ, Gaffney JS, Marley NA, Grutter M, Marquez C, Blanco S, Cardenas B, Retama A, Ramos Villegas CR, Kolb CE, Molina LT, Molina MJ (2007) Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos Chem Phys 7:2691–2704CrossRefGoogle Scholar
  15. Fraga H, Fernandes D, Novotny J, Fontes R, Esteves da Silva JC (2006) Firefly luciferase produces hydrogen peroxide as a coproduct in dehydroluciferyl adenylate formation. Chem Biochem 7:929–935Google Scholar
  16. Gao Y, Li B (2013) G-quadruplex DNAzyme-based chemiluminescence biosensing strategy for ultrasensitive DNA detection: combination of exonuclease III-assisted signal amplification and carbon nanotubes-assisted background reducing. Anal Chem 85:11494–11500CrossRefPubMedGoogle Scholar
  17. Gao H, Wang W, Wang Z, Han J, Fu Z (2014) Amorphous carbon nanoparticle used as novel resonance energy transfer acceptor for chemiluminescent immunoassay of transferrin. Anal Chim Acta 819:102–107CrossRefPubMedGoogle Scholar
  18. García-Campaña AM, Baeyens WRG (2000) Principles and recent analytical applications of chemiluminescence. Analusis 28:686–698CrossRefGoogle Scholar
  19. Gleu K, Petsch W (1935) Die Chemiluminescenz der Dimethyl-diacridyliumsalze. Angew Chem 48:57–59CrossRefGoogle Scholar
  20. Hao M, Liu N, Ma Z (2013) A new luminol chemiluminescence sensor for glucose based on pH-dependent graphene oxide. Analyst 138:4393–4397CrossRefPubMedGoogle Scholar
  21. He Y, Cui H (2012) Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J Mater Chem 22:9086–9091CrossRefGoogle Scholar
  22. He Y, Huang G, Cui H (2013) Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection. ACS Appl Mater 5:11336–11340CrossRefGoogle Scholar
  23. Huamin Q, Lulu F, Li X, Li L, Min S, Chuannan L (2013) Determination sulfamethoxazole based chemiluminescence and chitosan/graphene oxidemolecularly imprinted polymers. Carbohydr Polym 92:394–399CrossRefPubMedGoogle Scholar
  24. Jeon YI, Bharat LK, Yu JS (2015) White-light emission of Ca2La8(GeO4)6O2: Tb3þ/Sm3þ nanocrystalline phosphors for solid-state lighting applications. J Lumin 166:93–100CrossRefGoogle Scholar
  25. Jiao TF, Xing YY, Zhou JX (2011) Synthesis and characterization of functional cholesteryl substituted Luminol derivative. Mater Sci Forum 694:565–569CrossRefGoogle Scholar
  26. Khan P, Idrees D, Moxley MA, Corbett JA, Ahmad F, Figura GV, Sly WS, Waheed A, Hassan MI (2014) Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 173:333–355CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lazarides T, Alamiry MAH, Adams H, Pope SJA, Faulkner S, Weinstein JA, Ward MD (2007) Anthracene as a sensitiser for near-infrared luminescence in complexes of Nd(III), Er(III) and Yb(III): an unexpected sensitisation mechanism based on electron transfer. Dalton Trans 15:1484–1491CrossRefGoogle Scholar
  28. Lee JS, Joung HA, Kim MG, Park CB (2012) Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6:2978–2983CrossRefPubMedGoogle Scholar
  29. Lin Z, Xue W, Chen H, Lin JM (2011) Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem 83:8245–8251CrossRefPubMedGoogle Scholar
  30. Papadopoulos K, Triantis T, Boyatzis S, Dimotikali D, Nikokavouras J (2001) Photo- radio- and sono storage chemiluminescence of buckminsterfullerene C-60. J Photochem Photobiol A 143:93–97CrossRefGoogle Scholar
  31. Qiu H, Luo C, Sun M, Lu F, Fan L, Li X (2012a) A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers. Anal Chim Acta 744:75–81CrossRefPubMedGoogle Scholar
  32. Qiu H, Luo C, Sun M, Lu F, Fan L, Li X (2012b) A chemiluminescence sensor for determination of epinephrine using graphene oxide-magnetite-molecularly imprinted polymers. Carbon 50:4052–4060CrossRefGoogle Scholar
  33. Ramírez N, Vallecillos L, Lewis AC, Borrull F, Marcéc RM, Hamiltona JF (2015) Comparative study of comprehensive gas chromatography-nitrogen chemiluminescence detection and gas chromatography-iontrap-tandem mass spectrometry for determining nicotine and carcinogen organic nitrogen compounds in thirdhand tobacco smoke. J Chromatogr A 1426:191–200CrossRefPubMedGoogle Scholar
  34. Rauhut MM (1979) Chemiluminescence In kirk-othmer encycl Chem Technol 5: 416–450Google Scholar
  35. Rose AL, Waite TD (2001) Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. Anal Chem 73:5909–5920CrossRefPubMedGoogle Scholar
  36. Safavi A, Maleki N, Doroodmand MM, Koleini MM (2009) Carbon nanostructures as catalytic support for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system. Anal Chim Acta 644:61–67CrossRefPubMedGoogle Scholar
  37. Seitz WR, Suydam WW, Hercules DM (1972) Determination of trace amounts of chromium(III) using chemiluminescence analysis. Anal Chem 44:957–963CrossRefGoogle Scholar
  38. Song Y, Yang T, Zhang T, Jin N, Zhao Y, Fan A (2013) Ultrasensitive chemiluminescent immunoassay labeled with graphene oxide. Anal Methods 5:3646–3649CrossRefGoogle Scholar
  39. Stiles DA, Calokerinos AC, Townshend A (1994) Flame chemiluminescence analysis by molecular emission cavity detection. Wiley, New YorkGoogle Scholar
  40. Su R, Lin JM, Qu F, Chen Z, Gao Y, Yamada M (2004) Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Anal Chim Acta 508:11–15CrossRefGoogle Scholar
  41. Sun YG, Cui H, Lin XQ (2001) Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. J Lumin 92:205–211CrossRefGoogle Scholar
  42. Veazey RL, Nekimken H, Nieman TA (1984) Chemiluminescent reaction of lucigenin with reducing sugars. Talanta 31:603–606CrossRefPubMedGoogle Scholar
  43. Wang DM, Zhang Y, Zheng LL, Yang XX, Wang Y, Huang CZ (2012) Singlet oxygen involved Luminol Chemiluminescence catalyzed by graphene oxide. J Phys Chem 116:21622–21628Google Scholar
  44. Wang DM, Gao MX, Gao PF, Yang H, Huang CZ (2013) Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism. J Phys Chem C 117:19219–19225CrossRefGoogle Scholar
  45. Watanabe N, Oguri A, Horikoshi M, Takatsuka H, Ijuin HK, Matsumoto M (2014) Chemiexcitation efficiency for the charge-transfer-induced chemiluminescent decomposition of 3-hydroxyphenyl-substituted dioxetanes in an aqueous system. Tetrahedron Lett 55:1644–1647CrossRefGoogle Scholar
  46. Wiklund NP, Cellak S, Leone AM, Iversen HH, Gustafsson LE, Brundin L, Furst VW, Flock A, Moncada S (1997) Visualisation of nitric oxide released by nerve stimulation. J Neurosci Res 47:224–232CrossRefPubMedGoogle Scholar
  47. Wu Y, Nie F, Xia D (2015) Chemiluminescence assay for the glycoprotein tenascin-C based on aptamer-modified carboxylated magnetic carbon nanoparticles. Microchim Acta 182:227–232CrossRefGoogle Scholar
  48. Xie GY, Zhu Y, Shu P, Qin XY, Wu G, Wang Q, Qin MJ (2014) Phenolic metabolite profiles and antioxidants assay of three Iridaceae medicinal plants for traditional Chinese medicine “She-gan” by on-line HPLC–DAD coupled with chemiluminescence (CL) and ESI-Q-TOF-MS/MS. J Pharm Biomed Anal 98:40–51CrossRefPubMedGoogle Scholar
  49. Yang L, Zhang R, Liu B, Wang J, Wang S, Han MY, Zhang Z (2014a) p-Conjugated carbon radicals at graphene oxide to initiate Ultrastrong chemiluminescence. Angew Chem 53:10109–10113CrossRefGoogle Scholar
  50. Yang Z, Zhu J, Dai H, Li J, Shen J, Jiao X, Hu X, Ju H (2014b) Graphene oxide based ultrasensitive flow-through chemiluminescent immunoassay for sub-picogram level detection of chicken interferon-γ. Biosens Bioelectron 51:356–361CrossRefPubMedGoogle Scholar
  51. Yao H, Zhang M, Zeng W, Zeng X, Zhang Z (2014) A novel chemiluminescence assay of mitoxantrone based on diperiodatocuprate (III) oxidation. Spectrochim Acta A Mol Biomol Spectrosc 117:645–650CrossRefPubMedGoogle Scholar
  52. Zhang H, Cui H (2014) High-density assembly of chemiluminescence functionalized gold nanodots on multiwalled carbon nanotubes and their application as biosensing platforms. Nanoscale 6:2563–2566CrossRefPubMedGoogle Scholar
  53. Zhang C, Qi H, Zhang M (2007) Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin employing Ru(bpy)2(dcbpy)NHS and carrier protein. Luminescence 22:53–59CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Heena Rekhi
    • 1
  • Ripneel Kaur
    • 1
  • Ashok Kumar Malik
    • 1
  1. 1.Punjabi UniversityPatialaIndia

Personalised recommendations