Nonclinical Imaging Studies for the Diagnosis of Lymph Node Metastases

  • Kazunobu Ohnuki
  • Hirofumi FujiiEmail author


Nonclinical studies using animal models are essential to elucidate the pathogenesis of lymph node metastases and the application of imaging tests in this research field is very important because these tests can yield reliable results at the sacrifice of minimal number of animals.

Animal models and imaging modalities must be carefully selected to obtain fruitful results. Recently, imaging devices dedicated for small animal tests have been developed for various kinds of imaging modalities including combined scanners and they have contributed to the improvement of the quality of images of metastatic lesions in lymph nodes.

In the imaging study of lymph node metastases, direct detection of metastatic foci in lymph nodes is ideal. But, it is often difficult because early stages of metastatic lesions are too small to depict. Sentinel node mapping is an alternative way to diagnose small metastatic lesions in regional lymph nodes. Since new imaging modalities including optical imaging are recently proposed to identify sentinel nodes, nonclinical animal experiments to investigate these new imaging tests are attracting attentions of researchers.

Another idea to detect small metastatic foci is to observe the change in non-tumor areas of metastatic lymph nodes. As recent animal models can simulate tumor microenvironments in human tumors well, visualization of functional information inside lymph nodes such as immunological response in sentinel nodes is expected.


Lymph node metastases Small animal imaging Dedicated scanner Sentinel node 


  1. 1.
    Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in oncoimmunology. Nat Rev Cancer. 2016;16(12):759–73. Scholar
  2. 2.
    Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer. 2002;38(16):2173–88. Scholar
  3. 3.
    Eckhardt BL, Francis PA, Parker BS, Anderson RL. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov. 2012;11(6):479–97. Scholar
  4. 4.
    Terracina KP, Aoyagi T, Huang W-C, Nagahashi M, Yamada A, Aoki K, et al. Development of a metastatic murine colon cancer model. J Surg Res. 2015;199(1):106–14. Scholar
  5. 5.
    Partecke LI, Sendler M, Kaeding A, Weiss FU, Mayerle J, Dummer A, et al. A syngeneic Orthotopic murine model of pancreatic adenocarcinoma in the C57/BL6 mouse using the Panc02 and 6606PDA cell lines. Eur Surg Res. 2011;47(2):98–107. Scholar
  6. 6.
    Jiang YJ, Lee CL, Wang Q, Zhou ZW, Yang F, Jin C, et al. Establishment of an orthotopic pancreatic cancer mouse model: cells suspended and injected in Matrigel. World J Gastroenterol. 2014;20(28):9476–85. Scholar
  7. 7.
    Yang H, Kim C, Kim MJ, Schwendener RA, Alitalo K, Heston W, et al. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer. 2011;10:36. Scholar
  8. 8.
    Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary-tumor. Cancer Res. 1992;52(6):1399–405.PubMedGoogle Scholar
  9. 9.
    Jeong HS, Jones D, Liao S, Wattson DA, Cui CH, Duda DG, et al. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J Natl Cancer I. 2015;107(9):djv155. Scholar
  10. 10.
    Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 1975;35(1):218–24.PubMedGoogle Scholar
  11. 11.
    Partridge SC, Kurland BF, Liu CL, Ho RJ, Ruddell A. Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles. Sci Rep. 2015;5:15641. Scholar
  12. 12.
    Zhu B, Lu L, Cai W, Yang X, Li C, Yang Z, et al. Kallikrein-binding protein inhibits growth of gastric carcinoma by reducing vascular endothelial growth factor production and angiogenesis. Mol Cancer Ther. 2007;6(12 Pt 1):3297–306. Scholar
  13. 13.
    Fujihara T, Sawada T, Hirakawa K, Chung YS, Yashiro M, Inoue T, Sowa M. Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clin Exp Metastasis. 1998;16(4):389–98.CrossRefGoogle Scholar
  14. 14.
    Yanagihara K, Takigahira M, Tanaka H, Komatsu T, Fukumoto H, Koizumi F, et al. Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 2005;96(6):323–32. Scholar
  15. 15.
    Fernández Y, Foradada L, García-Aranda N, Mancilla S, Suárez-López L, Céspedes MV, Herance JR, Arango D, Mangues R, Schwartz S Jr, Abasolo I. Bioluminescent imaging of animal models for human colorectal cancer tumor growth and metastatic dissemination to clinically significant sites. J Mol Biol Mol Imaging. 2015;2:2.Google Scholar
  16. 16.
    Hackl C, Man S, Francia G, Milsom C, Xu P, Kerbel RS. Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut. 2013;62(2):259–71. Scholar
  17. 17.
    Bhullar JS, Subhas G, Silberberg B, Tilak J, Andrus L, Decker M, et al. A novel nonoperative Orthotopic colorectal Cancer murine model using electrocoagulation. J Am Coll Surg. 2011;213(1):54–60. Scholar
  18. 18.
    Gros SJ, Dohrmann T, Peldschus K, Schurr PG, Kaifi JT, Kalinina T, et al. Complementary use of fluorescence and magnetic resonance imaging of metastatic esophageal cancer in a novel orthotopic mouse model. Int J Cancer. 2010;126(11):2671–81. Scholar
  19. 19.
    Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. Scholar
  20. 20.
    Nagata H, Arai T, Soejima Y, Suzuki H, Ishii H, Hibi T. Limited capability of regional lymph nodes to eradicate metastatic cancer cells. Cancer Res. 2004;64(22):8239–48. Scholar
  21. 21.
    Trencsenyi G, Marian T, Bako F, Emri M, Nagy G, Kertai P, et al. Metastatic hepatocarcinoma he/de tumor model in rat. J Cancer. 2014;5(7):548–58. Scholar
  22. 22.
    Tang L, Duan R, Zhong YJ, Firestone RA, Hong YP, Li JG, et al. Synthesis, identification and in vivo studies of tumor-targeting agent peptide doxorubicin (PDOX) to treat peritoneal carcinomatosis of gastric cancer with similar efficacy but reduced toxicity. Mol Cancer. 2014;13:44. Scholar
  23. 23.
    Shen N, Tan J, Wang P, Wang J, Shi Y, Lv W, et al. Indirect magnetic resonance imaging lymphography identifies lymph node metastasis in rabbit pyriform sinus VX2 carcinoma using ultra-small super-paramagnetic iron oxide. PLoS One. 2014;9(4):e94876. Scholar
  24. 24.
    Goldberg BB, Merton DA, Liu JB, Thakur M, Murphy GF, Needleman L, et al. Sentinel lymph nodes in a swine model with melanoma: contrast-enhanced lymphatic US. Radiology. 2004;230(3):727–34. Scholar
  25. 25.
    Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768–80. Scholar
  26. 26.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(null)(c) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82. Scholar
  27. 27.
    Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen XH, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma(null) mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.CrossRefGoogle Scholar
  28. 28.
    de Jong M, Essers J, van Weerden WM. Imaging preclinical tumour models: improving translational power. Nat Rev Cancer. 2014;14(7):481–93. Scholar
  29. 29.
    Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–60. Scholar
  30. 30.
    Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour – targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803. Scholar
  31. 31.
    Fujii H, Umeda IO, Kojima Y. Instruments for radiation measurement in life sciences (5). ‘Development of imaging technology in life sciences’. 8. Small animal imaging using SPECT. Radioisotopes (Tokyo). 2008;57(3):219–32.CrossRefGoogle Scholar
  32. 32.
    Mitsuda M, Yamaguchi M, Furuta T, Nabetani A, Hirayama A, Nozaki A, et al. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model. Magn Reson Med Sci. 2011;10(4):229–37.CrossRefGoogle Scholar
  33. 33.
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965. Scholar
  34. 34.
    Walk EL, McLaughlin SL, Weed SA. High-frequency ultrasound imaging of mouse cervical lymph nodes. J Vis Exp. 2015;101:e52718. Scholar
  35. 35.
    Bell AG. LXVIII. Upon the production of sound by radiant energy. London Edinburgh Dublin Philos Mag J Sci. 1881;11(71):510–28.CrossRefGoogle Scholar
  36. 36.
    Mehrmohammadi M, Yoon SJ, Yeager D, Emelianov SY. Photoacoustic imaging for cancer detection and staging. Curr Mol Imaging. 2013;2(1):89–105. Scholar
  37. 37.
    Dorfman RE, Alpern MB, Gross BH, Sandler MA. Upper abdominal lymph-nodes – criteria for normal size determined with Ct. Radiology. 1991;180(2):319–22.CrossRefGoogle Scholar
  38. 38.
    Duncan K, Rosean TR, Tompkins VS, Olivier A, Sompallae R, Zhan F, et al. (18)F-FDG-PET/CT imaging in an IL-6- and MYC-driven mouse model of human multiple myeloma affords objective evaluation of plasma cell tumor progression and therapeutic response to the proteasome inhibitor ixazomib. Blood Cancer J. 2013;3:e165. Scholar
  39. 39.
    Mumprecht V, Honer M, Vigl B, Proulx ST, Trachsel E, Kaspar M, et al. In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res. 2010;70(21):8842–51. Scholar
  40. 40.
    Kovar JL, Johnson MA, Volcheck WM, Chen J, Simpson MA. Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am J Pathol. 2006;169(4):1415–26. Scholar
  41. 41.
    Zhang MH, Kim HS, Jin TF, Yi A, Moon WK. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases. Biomed Opt Express. 2016;7(5):1920–31. Scholar
  42. 42.
    Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: Tc-99m-DTPA-mannosyl-dextran. J Nucl Med. 2001;42(6):951–9.PubMedGoogle Scholar
  43. 43.
    Takagi K, Uehara T, Kaneko E, Nakayama M, Koizumi M, Endo K, et al. 99mTc-labeled mannosyl-neoglycoalbumin for sentinel lymph node identification. Nucl Med Biol. 2004;31(7):893–900. Scholar
  44. 44.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22(1):93–7. Scholar
  45. 45.
    Jaque D, Richard C, Viana B, Soga K, Liu X, García SJ. Inorganic nanoparticles for optical bioimaging. Adv Opt Photon. 2016;8(1):1. Scholar
  46. 46.
    Antaris AL, Chen H, Cheng K, Sun Y, Hong GS, Qu CR, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235. Scholar
  47. 47.
    Luke GP, Myers JN, Emelianov SY, Sokolov KV. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res. 2014;74(19):5397–408. Scholar
  48. 48.
    van Leeuwen AC, Buckle T, Bendle G, Vermeeren L, Olmos RV, van de Poel HG, et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt. 2011;16(1):016004. Scholar
  49. 49.
    Araki K, Mizokami D, Tomifuji M, Yamashita T, Ohnuki K, Umeda IO, et al. Novel indocyanine green-phytate colloid technique for sentinel node detection in head and neck: mouse study. Otolaryngol Head Neck Surg. 2014;151(2):279–85. Scholar
  50. 50.
    Okawa S, Ikehara T, Oda I, Yamada Y. Reconstruction of localized fluorescent target from multi-view continuous-wave surface images of small animal with lp sparsity regularization. Biomed Opt Express. 2014;5(6):1839–60. Scholar
  51. 51.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl J Med. 2003;348(25):2491–U5. Scholar
  52. 52.
    Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, et al. Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer. 2006;9(2):120–8. Scholar
  53. 53.
    Suzuki D, Yamaguchi M, Furuta T, Okuyama Y, Yoshikawa K, Fujii H. Central high signal in inflammatory swollen lymph nodes on SPIO-enhanced interstitial MR lymphograms: a mimic of lymph node metastasis. Magn Reson Med Sci. 2012;11(1):61–3.CrossRefGoogle Scholar
  54. 54.
    Li N, Wang XJ, Lin BH, Zhu H, Liu C, Xu XB, et al. Clinical evaluation of Tc-99m-rituximab for sentinel lymph node mapping in breast cancer patients. J Nucl Med. 2016;57(8):1214–20. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center (EPOC)National Cancer CenterKashiwaJapan

Personalised recommendations