Advertisement

Lymphoid Tissues Associated with Gastrointestinal (GI) Mucosa

  • Takahiro Nagatake
  • Jun Kunisawa
  • Hiroshi KiyonoEmail author
Chapter

Abstract

GI mucosa covers huge area of internal but outside of the body and encounters tremendous numbers and amounts of food antigens and nonpathogenic microorganisms, and occasionally expose to pathogens. Mucosa-associated lymphoid tissue or gut-associated lymphoid tissue (GALT) is a key organized lymphoid structure for the regulation and induction of antigen-specific immune responses. In this chapter, we describe the structure, function, and development of several types of GALTs, including Peyer’s patches, cecum patches, colonic patches, isolated lymphoid follicles, mesenteric lymph nodes, and cryptopatches. Lymphoid tissues associated with small intestine and large intestine are not only anatomically but also immunologically segregated for the induction of necessary immune responses. In addition, the GALT development can be divided into pre- and postnatal organogenesis with similarity and differences existing in the molecular and cellular requirement. Prenatal development of GALT is programed in the ontogeny, while postnatal development of GALT is controlled by external stimuli such as microbial stimulation and dietary materials. Therefore, each GALT shares some common features with unique function and developmental requirement which contribute for the creation of dynamism and homeostasis of gut immune system.

Keywords

Peyer’s patches Cecum patches Colonic patches Isolated lymphoid follicles Mesenteric lymph nodes Cryptopatches 

References

  1. 1.
    Pabst R. Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol Lett. 2007;112(1):1–8.  https://doi.org/10.1016/j.imlet.2007.06.009.PubMedCrossRefGoogle Scholar
  2. 2.
    Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol. 2010;10(12):813–25.  https://doi.org/10.1038/nri2886.PubMedCrossRefGoogle Scholar
  3. 3.
    Kunisawa J, Nochi T, Kiyono H. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 2008;29(11):505–13.  https://doi.org/10.1016/j.it.2008.07.008.PubMedCrossRefGoogle Scholar
  4. 4.
    Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med. 1996;184(2):707–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 2013;6(3):511–21.  https://doi.org/10.1038/mi.2012.90.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Leary AD, Sweeney EC. Lymphoglandular complexes of the colon: structure and distribution. Histopathology. 1986;10(3):267–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Masahata K, Umemoto E, Kayama H, Kotani M, Nakamura S, Kurakawa T, et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun. 2014;5:3704.  https://doi.org/10.1038/ncomms4704.PubMedCrossRefGoogle Scholar
  8. 8.
    Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168(1):57–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology. 1998;115(6):1414–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med. 1999;189(8):1169–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology. 1977;72(3):440–51.PubMedGoogle Scholar
  12. 12.
    Clark MA, Jepson MA, Simmons NL, Hirst BH. Differential surface characteristics of M cells from mouse intestinal Peyer’s and caecal patches. Histochem J. 1994;26(3):271–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Kweon MN, Yamamoto M, Rennert PD, Park EJ, Lee AY, Chang SY, et al. Prenatal blockage of lymphotoxin β receptor and TNF receptor p55 signaling cascade resulted in the acceleration of tissue genesis for isolated lymphoid follicles in the large intestine. J Immunol. 2005;174(7):4365–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77.  https://doi.org/10.1038/mi.2013.30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, Hase K, et al. Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol. 2008;180(12):7840–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakato G, Fukuda S, Hase K, Goitsuka R, Cooper MD, Ohno H. New approach for m-cell-specific molecules screening by comprehensive transcriptome analysis. DNA Res. 2009;16(4):227–35.  https://doi.org/10.1093/dnares/dsp013.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009;462(7270):226–30.  https://doi.org/10.1038/nature08529.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakato G, Hase K, Suzuki M, Kimura M, Ato M, Hanazato M, et al. Cutting Edge: Brucella abortus exploits a cellular prion protein on intestinal M cells as an invasive receptor. J Immunol. 2012;189(4):1540–4.  https://doi.org/10.4049/jimmunol.1103332.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29(2):261–71.  https://doi.org/10.1016/j.immuni.2008.05.014.PubMedCrossRefGoogle Scholar
  20. 20.
    Pabst O, Ohl L, Wendland M, Wurbel MA, Kremmer E, Malissen B, et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med. 2004;199(3):411–6.  https://doi.org/10.1084/jem.20030996.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hu S, Yang K, Yang J, Li M, Xiong N. Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc Natl Acad Sci U S A. 2011;108(45):E1035–44.  https://doi.org/10.1073/pnas.1100156108.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21(4):527–38.  https://doi.org/10.1016/j.immuni.2004.08.011.PubMedCrossRefGoogle Scholar
  23. 23.
    Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314(5802):1157–60.  https://doi.org/10.1126/science.1132742.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M, et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science. 2013;340(6139):1456–9.  https://doi.org/10.1126/science.1237013.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tilney NL. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971;109(Pt 3):369–83.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp Med. 1974;139(5):1189–203.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Van den Broeck W, Derore A, Simoens P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods. 2006;312(1–2):12–9.  https://doi.org/10.1016/j.jim.2006.01.022.PubMedCrossRefGoogle Scholar
  28. 28.
    Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 2016;9(2):468–78.  https://doi.org/10.1038/mi.2015.77.PubMedCrossRefGoogle Scholar
  29. 29.
    Toivonen R, Kong L, Rasool O, Lund RJ, Lahesmaa R, Hanninen A. Activation of plasmacytoid dendritic cells in colon-draining lymph nodes during citrobacter rodentium infection involves pathogen-sensing and inflammatory pathways distinct from conventional dendritic cells. J Immunol. 2016;196(11):4750–9.  https://doi.org/10.4049/jimmunol.1600235.PubMedCrossRefGoogle Scholar
  30. 30.
    Spiller RC. Intestinal absorptive function. Gut. 1994;35(1 Suppl):S5–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Nordgaard I, Mortensen PB. Digestive processes in the human colon. Nutrition. 1995;11(1):37–45.PubMedGoogle Scholar
  32. 32.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.  https://doi.org/10.1084/jem.20070590.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775–85.  https://doi.org/10.1084/jem.20070602.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med. 1996;184(4):1449–59.PubMedCrossRefGoogle Scholar
  35. 35.
    Hitotsumatsu O, Hamada H, Naganuma M, Inoue N, Ishii H, Hibi T, et al. Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine. J Gastroenterol. 2005;40(10):956–63.  https://doi.org/10.1007/s00535-005-1679-8.PubMedCrossRefGoogle Scholar
  36. 36.
    Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORγt+ cells. Science. 2004;305(5681):248–51.  https://doi.org/10.1126/science.1096472.PubMedCrossRefGoogle Scholar
  37. 37.
    Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science. 1998;280(5361):275–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanabe M, Hibi T, et al. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity. 2000;13(5):691–702.PubMedCrossRefGoogle Scholar
  39. 39.
    Oida T, Suzuki K, Nanno M, Kanamori Y, Saito H, Kubota E, et al. Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells. J Immunol. 2000;164(7):3616–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Bruno L, Rocha B, Rolink A, von Boehmer H, Rodewald HR. Intra- and extra-thymic expression of the pre-T cell receptor alpha gene. Eur J Immunol. 1995;25(7):1877–82.  https://doi.org/10.1002/eji.1830250713.PubMedCrossRefGoogle Scholar
  41. 41.
    Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδT cells. Nature. 1995;375(6534):795–8.  https://doi.org/10.1038/375795a0.PubMedCrossRefGoogle Scholar
  42. 42.
    Eberl G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol. 2005;5(5):413–20.  https://doi.org/10.1038/nri1600.PubMedCrossRefGoogle Scholar
  43. 43.
    Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol. 2003;170(11):5475–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6(3):205–17.  https://doi.org/10.1038/nri1786.PubMedCrossRefGoogle Scholar
  45. 45.
    Spahn TW, Herbst H, Rennert PD, Lugering N, Maaser C, Kraft M, et al. Induction of colitis in mice deficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am J Pathol. 2002;161(6):2273–82.  https://doi.org/10.1016/s0002-9440(10)64503-8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lochner M, Ohnmacht C, Presley L, Bruhns P, Si-Tahar M, Sawa S, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J Exp Med. 2011;208(1):125–34.  https://doi.org/10.1084/jem.20100052.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Oshima C, Okazaki K, Matsushima Y, Sawada M, Chiba T, Takahashi K, et al. Induction of follicular gastritis following postthymectomy autoimmune gastritis in Helicobacter pylori-infected BALB/c mice. Infect Immun. 2000;68(1):100–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shiu J, Piazuelo MB, Ding H, Czinn SJ, Drakes ML, Banerjee A, et al. Gastric LTi cells promote lymphoid follicle formation but are limited by IRAK-M and do not alter microbial growth. Mucosal Immunol. 2015;8(5):1047–59.  https://doi.org/10.1038/mi.2014.132.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Adachi S, Yoshida H, Kataoka H, Nishikawa S. Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol. 1997;9(4):507–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Spencer J, MacDonald TT, Finn T, Isaacson PG. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin Exp Immunol. 1986;64(3):536–43.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol. 2003;3(4):292–303.  https://doi.org/10.1038/nri1054.PubMedCrossRefGoogle Scholar
  52. 52.
    Bar-Ephraim YE, Mebius RE. Innate lymphoid cells in secondary lymphoid organs. Immunol Rev. 2016;271(1):185–99.  https://doi.org/10.1111/imr.12407.PubMedCrossRefGoogle Scholar
  53. 53.
    Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J Immunol. 2001;166(11):6593–601.PubMedCrossRefGoogle Scholar
  54. 54.
    Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol. 2001;167(5):2511–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397(6721):702–6.  https://doi.org/10.1038/17812.PubMedCrossRefGoogle Scholar
  56. 56.
    Boos MD, Yokota Y, Eberl G, Kee BL. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med. 2007;204(5):1119–30.  https://doi.org/10.1084/jem.20061959.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science. 2000;288(5475):2369–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5(1):64–73.  https://doi.org/10.1038/ni1022.PubMedCrossRefGoogle Scholar
  59. 59.
    Tachibana M, Tenno M, Tezuka C, Sugiyama M, Yoshida H, Taniuchi I. Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J Immunol. 2011;186(3):1450–7.  https://doi.org/10.4049/jimmunol.1000162.PubMedCrossRefGoogle Scholar
  60. 60.
    Fukuyama S, Nagatake T, Kim DY, Takamura K, Park EJ, Kaisho T, et al. Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. J Immunol. 2006;177(7):4276–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. CD4+CD3 cells induce Peyer’s patch development: role of α4β1 integrin activation by CXCR5. Immunity. 2002;17(3):363–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med. 2001;193(5):621–30.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer’s patches. Immunity. 2002;17(6):823–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity. 1998;9(1):59–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κ b-inducing kinase. Nat Genet. 1999;22(1):74–7.  https://doi.org/10.1038/8780.PubMedCrossRefGoogle Scholar
  66. 66.
    Yin L, Wu L, Wesche H, Arthur CD, White JM, Goeddel DV, et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science. 2001;291(5511):2162–5.  https://doi.org/10.1126/science.1058453.PubMedCrossRefGoogle Scholar
  67. 67.
    Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, et al. Essential role of nuclear factor (NF)-κB-inducing kinase and inhibitor of κB (IκB) kinase α in NF-κB activation through lymphotoxin β receptor, but not through tumor necrosis factor receptor I. J Exp Med. 2001;193(5):631–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nishikawa S, Honda K, Vieira P, Yoshida H. Organogenesis of peripheral lymphoid organs. Immunol Rev. 2003;195:72–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189(2):403–12.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol. 2009;10(11):1193–9.  https://doi.org/10.1038/ni.1789.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, et al. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature. 2007;446(7135):547–51.  https://doi.org/10.1038/nature05597.PubMedCrossRefGoogle Scholar
  72. 72.
    Fukuyama S, Kiyono H. Neuroregulator RET initiates Peyer’s-patch tissue genesis. Immunity. 2007;26(4):393–5.  https://doi.org/10.1016/j.immuni.2007.04.004.PubMedCrossRefGoogle Scholar
  73. 73.
    Kyriazis AA, Esterly JR. Development of lymphoid tissues in the human embryo and early fetus. Arch Pathol. 1970;90(4):348–53.PubMedGoogle Scholar
  74. 74.
    Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10(1):66–74.  https://doi.org/10.1038/ni.1668.PubMedCrossRefGoogle Scholar
  75. 75.
    De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science. 1994;264(5159):703–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, Kuklin NA, et al. Lymphotoxin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol. 1995;155(4):1685–93.PubMedGoogle Scholar
  77. 77.
    Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity. 1997;6(4):491–500.PubMedCrossRefGoogle Scholar
  78. 78.
    Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc Natl Acad Sci U S A. 1997;94(17):9302–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J Exp Med. 2002;195(12):1613–24.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Koni PA, Flavell RA. A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin β. J Exp Med. 1998;187(12):1977–83.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–47.PubMedCrossRefGoogle Scholar
  82. 82.
    Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14.  https://doi.org/10.1038/35018581.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med. 2000;192(10):1467–78.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.  https://doi.org/10.1038/16852.PubMedCrossRefGoogle Scholar
  85. 85.
    Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, et al. Essential role of IL-7 receptor α in the formation of Peyer’s patch anlage. Int Immunol. 1998;10(1):1–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity. 1995;2(3):223–38.PubMedCrossRefGoogle Scholar
  89. 89.
    Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 1995;3(6):771–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Okuda M, Togawa A, Wada H, Nishikawa S. Distinct activities of stromal cells involved in the organogenesis of lymph nodes and Peyer’s patches. J Immunol. 2007;179(2):804–11.PubMedCrossRefGoogle Scholar
  91. 91.
    McDonald KG, McDonough JS, Newberry RD. Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J Immunol. 2005;174(9):5720–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10.  https://doi.org/10.1038/nature07450.PubMedCrossRefGoogle Scholar
  93. 93.
    McDonald KG, McDonough JS, Wang C, Kucharzik T, Williams IR, Newberry RD. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am J Pathol. 2007;170(4):1229–40.  https://doi.org/10.2353/ajpath.2007.060817.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lugering A, Kucharzik T, Soler D, Picarella D, Hudson JT 3rd, Williams IR. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171(5):2208–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Lugering A, Ross M, Sieker M, Heidemann J, Williams IR, Domschke W, et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol. 2010;160(3):440–9.  https://doi.org/10.1111/j.1365-2249.2010.04103.x.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. 2011;334(6062):1561–5.  https://doi.org/10.1126/science.1214914.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2011;13(2):144–51.  https://doi.org/10.1038/ni.2187.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Takahiro Nagatake
    • 1
  • Jun Kunisawa
    • 1
    • 2
    • 3
    • 4
  • Hiroshi Kiyono
    • 5
    • 6
    • 7
    Email author
  1. 1.Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)Ibaraki-cityJapan
  2. 2.International Research and Development Center for Mucosal Vaccines, The Institute of Medical ScienceThe University of TokyoMinato-kuJapan
  3. 3.Department of Microbiology and ImmunologyKobe University Graduate School of MedicineKobe-cityJapan
  4. 4.Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of DentistryOsaka UniversitySuita-cityJapan
  5. 5.Department of Mucosal ImmunologyThe University of Tokyo Distinguished Professor DepartmentMinato-kuJapan
  6. 6.Department of Immunology, Graduate School of MedicineChiba University (CU)Chiba-cityJapan
  7. 7.Division of Gastroenterology, Department of Medicine, School of MedicineUniversity of California San Diego (UCSD) and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, UCSDSan DiegoUSA

Personalised recommendations