Advertisement

Role of Intra- and Inter-mitochondrial Membrane Contact Sites in Yeast Phospholipid Biogenesis

  • Yasushi TamuraEmail author
  • Toshiya Endo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 997)

Abstract

Eukaryotic cells exhibit intracellular compartments called organelles wherein various specialized enzymatic reactions occur. Despite the specificity of the characteristic functions of organelles, recent studies have shown that distinct organelles physically connect and communicate with each other to maintain the integrity of their functions. In yeast, multiple inter- and intramitochondrial membrane contact sites (MCSs) were identified to date and were proposed to be involved in phospholipid biogenesis. In the present article, we focus on inter- and intra-organellar MCSs involving mitochondria and their tethering factors, such as the ERMES (endoplasmic reticulum (ER)–mitochondria encounter structure) complex and EMC (conserved ER membrane protein complex) between mitochondria and the ER, vCLAMP (vacuole and mitochondria patch) between mitochondria and vacuoles, and the MICOS (mitochondrial contact site) complex between the mitochondrial outer and inner membranes (MOM and MIM). All of these membrane-tethering factors were proposed to be involved in phospholipid biogenesis. Furthermore, the existence of functional interconnections among multiple organelle contact sites is suggested. In the present article, we summarize the latest discoveries in regard to MCSs and MCS-forming factors involving mitochondria and discuss their molecular functions, with particular focus on phospholipid metabolism in yeast.

Keywords

Mitochondria Phospholipid ERMES vCLAMP EMC MICOS Yeast 

References

  1. Aaltonen MJ, Friedman JR, Osman C, Salin B, di Rago JP, Nunnari J, Langer T, Tatsuta T (2016) MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria. J Cell Biol 213:525–534CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553CrossRefPubMedGoogle Scholar
  3. AhYoung AP, Jiang J, Zhang J, Khoi Dang X, Loo JA, Zhou ZH, Egea PF (2015) Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc Natl Acad Sci USA 112:E3179–E3188CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balderhaar HJK, Ungermann C (2013) CORVET and HOPS tethering complexes- coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316CrossRefPubMedGoogle Scholar
  5. Berger KH, Sogo LF, Yaffe MP (1997) Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol 136:545–553CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 14:4618–4627CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burgess SM, Delannoy M, Jensen RE (1994) MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol 126:1375–1391CrossRefPubMedGoogle Scholar
  8. Choi JY, Wu WI, Voelker DR (2005) Phosphatidylserine decarboxylases as genetic and biochemical tools for studying phospholipid traffic. Anal Biochem 347:165–175CrossRefPubMedGoogle Scholar
  9. Clancey CJ, Chang SC, Dowhan W (1993) Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J Biol Chem 268:24580–24590PubMedGoogle Scholar
  10. Cohen Y, Klug YA, Dimitrov L, Erez Z, Chuartzman SG, Elinger D, Yofe I, Soliman K, Gärtner J, Thoms S et al (2014) Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol BioSyst 10:1742–1748CrossRefPubMedGoogle Scholar
  11. Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T (2012) Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–818CrossRefPubMedGoogle Scholar
  12. Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, Westermann B (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853CrossRefPubMedPubMedCentralGoogle Scholar
  13. Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30:95–102CrossRefPubMedGoogle Scholar
  14. Elbaz-Alon Y, Eisenberg-Bord M, Shinder V, Stiller SB, Shimoni E, Wiedemann N, Geiger T, Schuldiner M (2015) Lam6 Regulates the Extent of Contacts between Organelles. Cell Rep 12:7–14CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fransson Å, Ruusala A, Aspenström P (2003) Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278:6495–6502CrossRefPubMedGoogle Scholar
  16. Frederick RL, McCaffery JM, Cunningham KW, Okamoto K, Shaw JM (2004) Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J Cell Biol 167:87–98CrossRefPubMedPubMedCentralGoogle Scholar
  17. Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4Google Scholar
  18. Gibellini F, Smith TK (2010) The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428CrossRefPubMedGoogle Scholar
  19. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30:4356–4370CrossRefPubMedPubMedCentralGoogle Scholar
  20. Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hobbs AEA, Srinivasan M, Mccaffery JM, Jensen RE (2001) Mmm1p, a mitochondrial outer membrane protein, is connected to mtDNA nucleoids and required for mtDNA stability. J Cell Biol 152:401–410CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hönscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30:86–94CrossRefPubMedGoogle Scholar
  23. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, DeVay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340CrossRefPubMedPubMedCentralGoogle Scholar
  24. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614CrossRefPubMedGoogle Scholar
  25. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS et al (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697CrossRefPubMedPubMedCentralGoogle Scholar
  26. Khafif M, Cottret L, Balagué C, Raffaele S (2014) Identification and phylogenetic analyses of VASt, an uncharacterized protein domain associated with lipid-binding domains in Eukaryotes. BMC Bioinformatics 15:222CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kodaki T, Yamashita S (1989) Characterization of the methyltransferases in the yeast phosphatidylethanolamine methylation pathway by selective gene disruption. Eur J Biochem 185:243–251CrossRefPubMedGoogle Scholar
  28. Kojima R, Endo T, Tamura Y (2016) A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci Rep 6:30777CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kopec KO, Alva V, Lupas AN (2011) Bioinformatics of the TULIP domain superfamily. Biochem Soc Trans 39:1033–1038CrossRefPubMedGoogle Scholar
  30. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kornmann B, Osman C, Walter P (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci USA 108:14151–14156CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K, Kato R (2008) Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 105:488–493CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lahiri S, Chao JT, Tavassoli S, Wong AKO, Choudhary V, Young BP, Loewen CJR, Prinz WA (2014) A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12:e1001969CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lang AB, Peter ATJ, Walter P, Kornmann B (2015) ER–mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J Cell Biol 210:883–890CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mattiazzi Ušaj M, Brložnik M, Kaferle P, Žitnik M, Wolinski H, Leitner F, Kohlwein SD, Zupan B, Petrovič U (2015) Genome-Wide localization study of yeast Pex11 identifies peroxisome–mitochondria interactions through the ERMES complex. J Mol Biol 427:2072–2087CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meisinger C, Rissler M, Chacinska A, Sanjuán Szklarz LK, Milenkovic D, Kozjak V, Schönfisch B, Lohaus C, Meyer HE, Yaffe MP et al (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 7:61–71CrossRefPubMedGoogle Scholar
  37. Meisinger C, Wiedemann N, Rissler M, Strub A, Milenkovic D, Schönfisch B, Müller H, Kozjak V, Pfanner N (2006) Mitochondrial protein sorting: Differentiation of β-barrel assembly by Tom7-mediated segregation of Mdm10. J Biol Chem 281:22819–22826CrossRefPubMedGoogle Scholar
  38. Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T, Stojanovski D, Youngman MJ, Jensen RE, Chacinska A, Guiard B et al (2007) The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J 26:2229–2239CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miliara X, Garnett JA, Tatsuta T, Abid Ali F, Baldie H, Pérez-Dorado I, Simpson P, Yague E, Langer T, Matthews S (2015) Structural insight into the TRIAP1/PRELI-like domain family of mitochondrial phospholipid transfer complexes. EMBO Rep 16:824–835CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miyata N, Watanabe Y, Tamura Y, Endo T, Kuge O (2016) Phosphatidylserine transport by Ups2–Mdm35 in respiration-active mitochondria. J Cell Biol 214:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murley A, Sarsam R, Toulmay A, Yamada J, Prinz W, Nunnari J, Murley A, Sarsam R, Toulmay A, Yamada J et al (2015) Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts. J Cell Biol 209:539–548CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nguyen TT, Lewandowska A, Choi JY, Markgraf DF, Junker M, Bilgin M, Ejsing CS, Voelker DR, Rapoport TA, Shaw JM (2012) Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 13:880–890CrossRefPubMedPubMedCentralGoogle Scholar
  43. Osman C, Haag M, Potting C, Rodenfels J, Dip PV, Wieland FT, Brügger B, Westermann B, Langer T (2009) The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol 184:583–596CrossRefPubMedPubMedCentralGoogle Scholar
  44. Porter KR, Palade GE (1957) Studies on the endoplasmic reticulum. J Biophys Biochem Cytol 3:269–300CrossRefPubMedPubMedCentralGoogle Scholar
  45. Potting C, Wilmes C, Engmann T, Osman C, Langer T (2010) Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29:2888–2898CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Körner C, Jagasia R, Keil T, Baumeister W et al (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e / g. J Cell Biol 185:1047–1063CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sesaki H, Jensen RE (2004) Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem 279:28298–28303CrossRefPubMedGoogle Scholar
  48. Sesaki H, Southard SM, Yaffe MP, Jensen RE (2003) Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol Biol Cell 14:2342–2356CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shiota T, Mabuchi H, Tanaka-Yamano S, Yamano K, Endo T (2011) In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proc Natl Acad Sci USA 108:15179–15183CrossRefPubMedPubMedCentralGoogle Scholar
  50. Simbeni R, Tangemann K, Schmidt M, Ceolotto C, Paltauf F, Daum G (1993) Import of phosphatidylserine into isolated yeast mitochondria. Biochim Biophys Acta 1145:1–7CrossRefPubMedGoogle Scholar
  51. Sogo LF, Yaffe MP (1994) Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol 126:1361–1373CrossRefPubMedGoogle Scholar
  52. Stroud DA, Oeljeklaus S, Wiese S, Bohnert M, Lewandrowski U, Sickmann A, Guiard B, Van Der Laan M, Warscheid B, Wiedemann N (2011) Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J Mol Biol 413:743–750CrossRefPubMedGoogle Scholar
  53. Tamura Y, Harada Y, Shiota T, Yamano K, Watanabe K, Yokota M, Yamamoto H, Sesaki H, Endo T (2009a) Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J Cell Biol 184:129–141CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tamura Y, Endo T, Iijima M, Sesaki H (2009b) Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J Cell Biol 185:1029–1045CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tamura Y, Iijima M, Sesaki H (2010) Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J 29:2875–2887CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tamura Y, Onguka O, Itoh K, Endo T, Iijima M, Claypool SM, Sesaki H (2012a) Phosphatidylethanolamine Biosynthesis in Mitochondria: Phosphatidylserine (PS) trafficking in independent of a PS decarboxylase and intermembrane space protiens Ups1p and Ups2p. J Biol Chem 287:43961–43971CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tamura Y, Onguka O, Aiken Hobbs AE, Jensen RE, Iijima M, Claypool SM, Sesaki H (2012b) Role for two conserved intermembrane space proteins, Ups1p and Ups2p, in intra-mitochondrial phospholipid trafficking. J Biol Chem 287:15205–15218CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tamura Y, Sesaki H, Endo T (2014) Phospholipid transport via mitochondria. Traffic 15:933–945CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52CrossRefPubMedGoogle Scholar
  60. Tong A, Evangelista M, Parsons A, Xu H, Bader G, Pagé N, Robinson M, Raghibizadeh S, Hogue C, Bussey H et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368CrossRefPubMedGoogle Scholar
  61. Vogel F, Bornhövd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247CrossRefPubMedPubMedCentralGoogle Scholar
  62. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21:694–707CrossRefPubMedGoogle Scholar
  63. Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA (2012) ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J Cell Sci 125:4791–4799CrossRefPubMedPubMedCentralGoogle Scholar
  64. Watanabe Y, Tamura Y, Kawano S, Endo T (2015) Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria. Nat Commun 6:7922CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari J (2003) The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol 160:303–311CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wurm CA, Jakobs S (2006) Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett 580:5628–5634CrossRefPubMedGoogle Scholar
  67. Yamano K, Tanaka-Yamano S, Endo T (2010) Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep 11:187–193CrossRefPubMedPubMedCentralGoogle Scholar
  68. Youngman MJ, Hobbs AEA, Burgess SM, Srinivasan M, Jensen RE (2004) Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J Cell Biol 164:677–688CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yu F, He F, Yao H, Wang C, Wang J, Li J, Qi X, Xue H, Ding J, Zhang P (2015) Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. EMBO Rep 16:813–823CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Material and Biological Chemistry, Faculty of ScienceYamagata UniversityYamagataJapan
  2. 2.Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan

Personalised recommendations