Leveraging Big (Geo) Data with (Geo) Visual Analytics: Place as the Next Frontier

  • Alan M. MacEachrenEmail author
Part of the Advances in Geographic Information Science book series (AGIS)


A tension exists in the discipline of Geography between the concepts of space and place. Most research and development in Geographical Information Science (GIScience) has been focused on the former, through methods to formally structure data about the world and to systematically model and analyze aspects of the world as represented through those structured data. People, however, live and behave in socially constructed places; what they care about happens in those places rather than in some abstract, modeled ‘space’. Study of place, by human geographers (and other social scientists and humanist scholars), typically using qualitative methods and seldom relying on digital data, has proceeded largely independently of GIScience research focused on space. There have been calls within GIScience to formalize place to enable application of Geographical Information Systems methods to place-based problems, and some progress in this direction has been made. Here, however, a complementary view is offered for treating ‘place’ as a first class object of attention by capitalizing on the combination of “big data” and new human-centered visual analytical methods to enable understanding of the complexity inherent in place as both a concept and a context for human behavior.


Visual analytics Big data Unstructured data Place versus space 



Examples in Section “Data Variety” were derived as part of the GeoTxt project, in collaboration with Jan Wallgrün, Morteza Karimzadeh, and Scott Pezanowski; A portion of this research was supported by the Visual Analytics for Command, Control, and Interoperability Environments (VACCINE) project, a center of excellence of the Department of Homeland Security, under Award #2009-ST-061-CI0001. See also: Wallgrün, Jan Oliver, Morteza Karimzadeh, Alan M. MacEachren, Frank Hardisty, Scott Pezanowski, and Yiting Ju. 2014. “Construction and First Analysis of a Corpus for the Evaluation and Training of Microblog/Twitter Geoparsers.” GIR’14: 8th ACM SIGSPATIAL Workshop on Geographic Information Retrieval, Dallas, TX.


  1. Agarwal, P. (2005). Operationalising “sense of place” as a cognitive operator for semantics in placebBased ontologies. In A. G. Cohn & D. M. Mark (Eds.), Lecture notes in computer science (pp. 96–114).Google Scholar
  2. Agnew, J. (2011). Space and place. London: The Sage Handbook of Geographical Knowledge (pp. 316–330).Google Scholar
  3. Agnew, J. A., & Duncan, J. S. (2014). The power of place (RLE Social & Cultural Geography): Bringing together geographical and sociological imaginations. Routledge.Google Scholar
  4. Alexander, C. (2002). The nature of order an essay on the art of building and the nature of the universe: Book I-the phenomenon of life (p. 119). Berkeley, California: The Center for Environmental Structure.Google Scholar
  5. Andrienko, G., Andrienko, N., Bak, P., Keim, D., & Wrobel, S. (2013). Visual analytics of movement. Springer Science & Business Media.Google Scholar
  6. Andrienko, G., Andrienko, N., Keim, D., MacEachren, A. M., & Wrobel, S. (2011). Challenging problems of geospatial visual analytics. Journal of Visual Languages and Computing, 22(4), 251–256.CrossRefGoogle Scholar
  7. Andrienko, N., Andrienko, G., Fuchs, G., & Jankowski, P. (2015). Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Information Visualization, 15(2), 117–153.CrossRefGoogle Scholar
  8. Andriole, S. (2015). Unstructured data: The other side of analytics. Forbes.
  9. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 93–115.CrossRefGoogle Scholar
  10. Bennett, B., & Agarwal, P. (2007). Semantic categories underlying the meaning of ‘place’. In International Conference on Spatial Information Theory (pp. 78–95). New York: Springer.Google Scholar
  11. Bharti, N., Tatem, A. J., Ferrari, M. J., Grais, R. F., Djibo, A., & Grenfell, B. T. (2011). Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science, 334(6061), 1424–1427.CrossRefGoogle Scholar
  12. Carmona, M. (2003). Public places, urban spaces: The dimensions of urban design. Amsterdam: Routledge.Google Scholar
  13. Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J., & Waters, N. (2016). Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. International Journal of Remote Sensing, 37(1), 100–124.CrossRefGoogle Scholar
  14. Charlton, M., Fotheringham, S., & Brunsdon, C. (2006). Geographically weighted regression. NCRM/006, National University of Ireland Maynooth, Maynooth, Co. Kildare, IRELAND.Google Scholar
  15. Cresswell, T. (2014). Place: An introduction. Chichester, West Sussex: Wiley.Google Scholar
  16. De Blij, H. (2008). The power of place: Geography, destiny, and globalization’s rough landscape. Oxford, UK: Oxford University Press.Google Scholar
  17. Duncan, J. S., & Ley, D. (1993). Place/culture/representation. New York, NY: Routledge.Google Scholar
  18. Edwardes, A. J., & Purves, R. S. (2007). Eliciting concepts of place for text-based image retrieval. In Proceedings of the 4th ACM Workshop on Geographical Information Retrieval (pp. 15–18). ACM, Lisbon, Portugal.Google Scholar
  19. Egenhofer, M., & Herring, J. R. (1990). A mathematical framework for the definition of topological relationships. In Proceedings of the 4th International Symposium on Spatial Data Handling (vol. 2, pp. 803–813).Google Scholar
  20. Ellard, C. (2015). Places of the heart: The psychogeography of everyday life. New York: Bellevue Literary Press.Google Scholar
  21. Goodchild, M. F. (2011). Formalizing place in geographic information systems. In L. M. M. Burton, S. A. P. Matthews, M. Leung, S. P. A. Kemp, & D. T. T. Takeuchi (Eds.), Communities, neighborhoods, and health. Social disparities in health and health care (pp. 21–33). New York: Springer.Google Scholar
  22. Gustafson, P. E. R. (2001). Meanings of place: Everyday experience and theoretical conceptualizations. Journal of Environmental Psychology, 21(1), 5–16.CrossRefGoogle Scholar
  23. Hardy, D., Frew, J., & Goodchild, M. F. (2012). Volunteered geographic information production as a spatial process. International Journal of Geographical Information Science, 26(7), 1191–1212.CrossRefGoogle Scholar
  24. Hubbard, P., & Kitchin, R. (2010). Key thinkers on space and place. Beverly Hills: Sage.Google Scholar
  25. Hubert, L. J., Golledge, R. G., & Costanzo, C. M. (1981). Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis, 13(3), 224–333.CrossRefGoogle Scholar
  26. Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial semantics and linked spatiotemporal data–past, present, and future. Semantic Web, 3(4), 321–332.Google Scholar
  27. Jenkins, A., Croitoru, A., Crooks, A. T., & Stefanidis, A. (2016). Crowdsourcing a collective sense of place. PLoS ONE, 11(4), e0152932.CrossRefGoogle Scholar
  28. Keim, D., Kohlhammer, J., Ellis, G., & Mansmann, F. (Eds.). (2010). Mastering the information age: Solving problems with visual analytics. Goslar, Germany: Eurographics Association.Google Scholar
  29. Keim, D. A., Krstajic, M., Rohrdantz, C., & Schreck, T. (2013). Real-time visual analytics for text tsreams. Computer, 46(7), 47–55.CrossRefGoogle Scholar
  30. Klippel, A., Yang, J., Wallgrün, J.O., Dylla, F., & Li, R. (2012). Assessing similarities of qualitative spatio-temporal relations. Spatial Cognition VIII (pp. 242–261). New York: Springer.Google Scholar
  31. Kohlhammer, J., May, T., & Hoffmann, M. (2009). Visual analytics for the strategic decision making process. GeoSpatial Visual Analytics, 299–310.Google Scholar
  32. Kraft, T., Wang, D. X, Delawder, J., Dou, W., Yu, L., & Ribarsky, W. (2013). Less after-the-fact: Investigative visual analysis of events from streaming twitter. In B. Geveci, H. Pfister & V. Vishwanath (Eds.), IEEE symposium on large-scale data analysis and visualization (LDAV) (pp. 95–103), Citeseer.Google Scholar
  33. Langran, G. (1992). Time in geographic information systems. Technical topics in geographic information systems. London: Taylor & Francis.Google Scholar
  34. Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., et al. (2015). Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 105(3), 512–530.CrossRefGoogle Scholar
  35. Madia, K. (2015). Embracing real-time, streaming analytics in the insight economy, blogs. IBM, IBM Big Data & Analytics Hub.Google Scholar
  36. Malik, A., Maciejewski, R., Jang, Y., Oliveros, S., Yang, Y., Maule, B., et al. (2012). A visual analytics process for maritime response, resource allocation and risk assessment. Information Visualization, 13(2), 93–110.CrossRefGoogle Scholar
  37. Martin, D. (1998). Optimizing census geography: The separation of collection and output geographies. International Journal of Geographical Information Science, 12(7), 673–685.CrossRefGoogle Scholar
  38. Massey, D. (2013). Space, place and gender. New York: Wiley.Google Scholar
  39. Massey, D. B. (1994). Space, place, and gender. Minneapolis: University of Minnesota Press.Google Scholar
  40. Mennis, J. L., Peuquet, D. J., & Qian, L. J. (2000). A conceptual framework for incorporating cognitive principles into geographical database representation. International Journal of Geographical Information Science, 14(6), 501–520.CrossRefGoogle Scholar
  41. Monroe, B. L. (2013). The five Vs of big data political science introduction to the virtual issue on big data in political science. Political Analysis, Virtual Issue, 19(5), 66–86.Google Scholar
  42. Morison, B. (2002). On location: Aristotle’s concept of place. Oxford Aristotle Studies: Clarenden Press, Oxford, Oxford. 194.CrossRefGoogle Scholar
  43. Nairn, K., Kraftl, P., & Skelton, T. (eds.) (2016). Space, place and environment. Geographies of children and young people (vol. 3). New York: Springer.Google Scholar
  44. Nelson, J. K., Quinn, S., Swedberg, B., Chu, W., & MacEachren, A. M. (2015). Geovisual analytics approach to exploring public political discourse in Twitter. ISPRS International Journal of Geo-Information, 4(1), 337–366.CrossRefGoogle Scholar
  45. Peuquet, D. J. (1988). Representations of geographic space: Toward a conceptual synthesis. Annals of the Association of American Geographers, 78(3), 373–394.CrossRefGoogle Scholar
  46. Pezanowski, S., MacEachren, A. M., Savelyev, A., & Robinson, A. C. submitted. SensePlace3: A geovisual framework to analyze place-time-attribute information in social media.Google Scholar
  47. Pred, A. (1984). Place as historically contingent process: Structuration and the time- geography of becoming places. Annals of the AAG, 74(2), 279–297.Google Scholar
  48. Quinn, S., & Yapa, L. (2015). OpenStreetMap and food security: A case study in the city of Philadelphia. The Professional Geographer, 68(2), 271–280.CrossRefGoogle Scholar
  49. Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., et al. (2010). Redrawing the map of Great Britain from a network of human interactions. PLoS ONE, 5(12), e14248.CrossRefGoogle Scholar
  50. Relph, E. (1976). Place and placelessness, 1. Pion.Google Scholar
  51. Richardson, M., Kamalski, J., Huggett, S., & Andrew, P.… Courtesy of In, e.b. (2012). The fundamental interconnectedness of all things. In K. Börner & M. J. Stamper (Eds.), Courtesy of Elsevier Ltd. In “8th iteration (2012): science maps for kids,” places & spaces: Mapping science. curated by the cyberinfrastructure for network science center,
  52. Robinson, A. C. (2011). Supporting synthesis in geovisualization. International Journal of Geographical Information Science, 25(2), 211–227.CrossRefGoogle Scholar
  53. Roche, S., & Rajabifard, A. (2012). Sensing places’ life to make city smarter. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (pp. 41–46). Beijing, China: ACM.Google Scholar
  54. Savelyev, A., & MacEachren, A. M. (2014). Interactive, browser-based information foraging in heterogeneous space-centric networks. In G. Andrienko et al. (Eds.), Workshop on geovisual analytics: Interactivity, dynamics, and scale, in conjunction with GIScience 2014. Vienna: Austria.Google Scholar
  55. Savelyev, A., & MacEachren, A. M. in preparation. Interactive, browser-based information foraging in heterogeneous space-centric networks.Google Scholar
  56. Scheider, S., & Janowicz, K. (2014). Place reference systems. Applied Ontology, 9(2), 97–127.Google Scholar
  57. Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 25(11), 1737–1748.CrossRefGoogle Scholar
  58. Sun, Y., & Han, J. (2012). Mining heterogeneous information networks: Principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2), 1–159.CrossRefGoogle Scholar
  59. Thomas, J. J., & Cook, K. A. (Eds.). (2005). Illuminating the path: The research and development agenda for visual analytics. Los Alamos, CA: IEEE Computer Society.Google Scholar
  60. Tomaszewski, B., Blanford, J., Ross, K., Pezanowski, S., & MacEachren, A. M. (2011). Supporting geographically-aware web document foraging and sensemaking. Computers, Environment and Urban Systems, 35(3), 192–207.CrossRefGoogle Scholar
  61. Tomaszewski, B., & MacEachren, A. M. (2012). Geovisual analytics to support crisis management: Information foraging for geo-historical context. In Information Visualization (invited extension of paper originally published in proceedings of IEEE VAST 2010) (vol. 11(4), pp. 339–359).Google Scholar
  62. Tuan, Y.-F. (1977). Space and place: The perspective of experience. Minneapolis: University of Minnesota Press. 226.Google Scholar
  63. Vasardani, M., & Winter, S. (2016). Place properties. In H. Onsrud & W. Kuhn (Eds.), Advancing geographic information science: The past and next twenty years (pp. 243–254). Needham, MA: GSDI Association Press.Google Scholar
  64. Wang, X., Miller, E., Smarick, K., Ribarsky, W., & Chang, R. (2008). Investigative visual analysis of global terrorism. Computer Graphics Forum, 27(3), 919–926.CrossRefGoogle Scholar
  65. Winter, S., & Freksa, C. (2012). Approaching the notion of place by contrast. Journal of Spatial Information Science, 2012(5), 31–50.Google Scholar
  66. Wojcik, S. P., Hovasapian, A., Graham, J., Motyl, M., & Ditto, P. H. (2015). Conservatives report, but liberals display, greater happiness. Science, 347(6227), 1243–1246.CrossRefGoogle Scholar
  67. Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21(3), 311–332.CrossRefGoogle Scholar
  68. Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Lu, F., Chen, J., et al. (2016). Another tale of two cities: Understanding human activity space using actively tracked cellphone location data. Annals of the American Association of Geographers, 106(2), 489–502.Google Scholar
  69. Yang, X., Ye, X., & Sui, D. Z. (2016). We know where you are: In space and place-enriching the geographical context through social media. International Journal of Applied Geospatial Research (IJAGR), 7(2), 61–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.GeoVISTA Center, Department of GeographyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations