Advertisement

Exosomes: Nanocarriers of Biological Messages

  • Alice Conigliaro
  • Simona Fontana
  • Stefania Raimondo
  • Riccardo Alessandro
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Cell-cell communication is crucial to maintain homeostasis in multicellular organism. Cells communicate each other by direct contact or by releasing factors that, soluble or packaged in membrane vesicles, can reach different regions of the organism. To date numerous studies highlighted the existence of several types of extracellular vesicles that, differing for dimension, origin and contents, play a role in physiological and/or pathological processes. Among extracellular vesicles, exosomes are emerging as efficient players to modulate target cells phenotype and as new non-invasive diagnostic and prognostic tools in multiple diseases. They, in fact, strictly reflect the type and functional status of the producing cells and are able to deliver their contents even over a long distance. The results accumulated in the last two decades and collected in this chapter, indicated that exosomes, can carry RNAs, microRNAs, long non-coding RNAs, DNA, lipids, metabolites and proteins; a deeper understanding of their contents is therefore needed to get the most from this incredible cell product.

Keywords

Exosomes content Proteomic profile of exosomes miRNA Long non coding RNA DNA 

Notes

Acknowledgment

Riccardo Alessandro received a grant (n°18783) from the Associazione Italiana per la Ricerca sul Cancro (AIRC). Stefania Raimondo issupported by a “FIRC” (Fondazione Italiana Ricerca sul Cancro) fellowship.

Conflict of Interests The authors declare no conflict of interest.

References

  1. 1.
    Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066PubMedCrossRefGoogle Scholar
  2. 2.
    Deatherage BL, Cookson BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80(6):1948–1957PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14(3):5338–5366PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefGoogle Scholar
  6. 6.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565PubMedCrossRefGoogle Scholar
  7. 7.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12 (1):19–30; sup pp 11–13Google Scholar
  8. 8.
    Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23(4):452–457PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13(10–11):1554–1571PubMedCrossRefGoogle Scholar
  12. 12.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMedCrossRefGoogle Scholar
  13. 13.
    Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89(2):205–212PubMedCrossRefGoogle Scholar
  14. 14.
    Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A (1989) Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol 140(3):455–462PubMedCrossRefGoogle Scholar
  15. 15.
    de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102(13):4336–4344PubMedCrossRefGoogle Scholar
  16. 16.
    Dubois L, Ronquist KK, Ek B, Ronquist G, Larsson A (2015) Proteomic profiling of detergent resistant membranes (lipid rafts) of prostasomes. Mol Cell Proteomics 14(11):3015–3022PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I, Ekroos K, Sandvig K (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831(7):1302–1309PubMedCrossRefGoogle Scholar
  18. 18.
    Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA, Aronin N, Khvorova A (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:32570PubMedCrossRefGoogle Scholar
  19. 19.
    Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS (2002) Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res 62(21):6312–6317PubMedGoogle Scholar
  20. 20.
    Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51(8):2105–2120PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124(11):2621–2633PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Esser J, Gehrmann U, D’Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A, Gabrielsson S, Radmark O (2010) Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 126(5):1032–1040, 1040 e1031–e1034Google Scholar
  23. 23.
    Altadill T, Campoy I, Lanau L, Gill K, Rigau M, Gil-Moreno A, Reventos J, Byers S, Colas E, Cheema AK (2016) Enabling metabolomics based biomarker discovery studies using molecular phenotyping of exosome-like vesicles. PLoS One 11(3):e0151339PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Palomo L, Casal E, Royo F, Cabrera D, van-Liempd S, Falcon-Perez JM (2014) Considerations for applying metabolomics to the analysis of extracellular vesicles. Front Immunol 5:651PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Royo F, Palomo L, Mleczko J, Gonzalez E, Alonso C, Martinez I, Perez-Cormenzana M, Castro A, Falcon-Perez JM (2017) Metabolically active extracellular vesicles released from hepatocytes under drug-induced liver-damaging conditions modify serum metabolome and might affect different pathophysiological processes. Eur J Pharm Sci 98:51–57. doi: 10.1016/j.ejps.2016.10.020. S0928-0987(16)30449-3 [pii]PubMedCrossRefGoogle Scholar
  26. 26.
    Fontana S, Saieva L, Taverna S, Alessandro R (2013) Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics 13(10–11):1581–1594PubMedGoogle Scholar
  27. 27.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borras FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Kramer-Albers EM, Lim SK, Llorente A, Lotvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-’t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sanchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vazquez J, Vidal M, Wauben MH, Yanez-Mo M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1. doi: 10.3402/jev.v1i0.18374
  29. 29.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, Cardinale VG, Giallombardo M, Vicario E, Rolfo C, Leo GD, Alessandro R (2016) Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget 7(21):30420–30439PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med 92(4):387–397PubMedCrossRefGoogle Scholar
  32. 32.
    Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28(4):970–973PubMedGoogle Scholar
  33. 33.
    Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33(7):2158–2168PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Montgomery EN, Mellema MS, Bardini RL, Contreras Z, Hoon M, Bauer G, Fink KD, Fury B, Hendrix KJ, Chedin F, El-Andaloussi S, Hwang B, Mulligan MS, Lehtio J, Nolta JA (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-KappaB signaling. Stem Cells 34(3):601–613PubMedCrossRefGoogle Scholar
  35. 35.
    Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Pasha Z, Wen Z, Rao F, Modi RM, Yu X, Ashraf M (2014) Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells 32(2):462–472PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Khan S, Bennit HF, Turay D, Perez M, Mirshahidi S, Yuan Y, Wall NR (2014) Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14:176PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR (2013) Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.22097
  39. 39.
    Lee MJ, Park DH, Kang JH (2016) Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab 21(3):119–125PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, Pasterkamp G, Visseren FL (2014) Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Raimondo F, Corbetta S, Morosi L, Chinello C, Gianazza E, Castoldi G, Di Gioia C, Bombardi C, Stella A, Battaglia C, Bianchi C, Magni F, Pitto M (2013) Urinary exosomes and diabetic nephropathy: a proteomic approach. Mol BioSyst 9(6):1139–1146PubMedCrossRefGoogle Scholar
  42. 42.
    Zubiri I, Posada-Ayala M, Sanz-Maroto A, Calvo E, Martin-Lorenzo M, Gonzalez-Calero L, de la Cuesta F, Lopez JA, Fernandez-Fernandez B, Ortiz A, Vivanco F, Alvarez-Llamas G (2014) Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteome 96:92–102CrossRefGoogle Scholar
  43. 43.
    Gudehithlu KP, Garcia-Gomez I, Vernik J, Brecklin C, Kraus M, Cimbaluk DJ, Hart P, Dunea G, Arruda JA, Singh AK (2015) In diabetic kidney disease urinary exosomes better represent kidney specific protein alterations than whole urine. Am J Nephrol 42(6):418–424PubMedCrossRefGoogle Scholar
  44. 44.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  46. 46.
    Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gutkin A, Uziel O, Beery E, Nordenberg J, Pinchasi M, Goldvaser H, Henick S, Goldberg M, Lahav M (2016) Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget 7(37):59173–59188. doi: 10.18632/oncotarget.10384 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3. doi: 10.3402/jev.v3.23743
  49. 49.
    Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5(1):e8577PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224PubMedCrossRefGoogle Scholar
  52. 52.
    Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O’Neal W, Pickles RJ, Sheehan JK (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23(6):1858–1868PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedCrossRefGoogle Scholar
  54. 54.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  55. 55.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5(10):e13247PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5(10):e13515PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sanchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17(3):799–808PubMedCrossRefGoogle Scholar
  62. 62.
    Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8(5):1432–1446PubMedCrossRefGoogle Scholar
  63. 63.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–D111PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128PubMedCrossRefGoogle Scholar
  65. 65.
    Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25(46):6176–6187PubMedCrossRefGoogle Scholar
  67. 67.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263PubMedCrossRefGoogle Scholar
  68. 68.
    Lo Dico A, Costa V, Martelli C, Diceglie C, Rajata F, Rizzo A, Mancone C, Tripodi M, Ottobrini L, Alessandro R, Conigliaro A (2016) MiR675-5p acts on HIF-1alpha to sustain hypoxic responses: a new therapeutic strategy for glioma. Theranostics 6(8):1105–1118PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Raimondo S, Corrado C, Raimondi L, De Leo G, Alessandro R (2015) Role of extracellular vesicles in hematological malignancies. Biomed Res Int 2015:821613PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D, Ferrara N (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31(17):3513–3523PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G, Alessandro R (2012) Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 130(9):2033–2043PubMedCrossRefGoogle Scholar
  72. 72.
    Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124(5):2136–2146PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Investig 123(5):2143–2154PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Da Costa Martins PA, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93(4):563–572PubMedCrossRefGoogle Scholar
  76. 76.
    Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, YM X, Huang LF, Wang XZ (2015) Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015:657086PubMedPubMedCentralGoogle Scholar
  77. 77.
    Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:6999PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frank S, Aguirre A, Hescheler J, Kurian L (2016) A lncRNA perspective into (re)building the heart. Front Cell Dev Biol 4:128PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bhartiya D, Scaria V (2016) Genomic variations in non-coding RNAs: structure, function and regulation. Genomics 107(2–3):59–68PubMedCrossRefGoogle Scholar
  80. 80.
    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010):873–878PubMedCrossRefGoogle Scholar
  81. 81.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG (2011) ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159PubMedCrossRefGoogle Scholar
  89. 89.
    Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R (2015) CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 14:155PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4(7–8):261–272PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chen M, Xu R, Ji H, Greening DW, Rai A, Izumikawa K, Ishikawa H, Takahashi N, Simpson RJ (2016) Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep 6:38397PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chistiakov DA, Chekhonin VP (2014) Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 35(9):8425–8438PubMedCrossRefGoogle Scholar
  93. 93.
    Ahadi A, Brennan S, Kennedy PJ, Hutvagner G, Tran N (2016) Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci Rep 6:24922PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhang J, Liu SC, Luo XH, Tao GX, Guan M, Yuan H, Hu DK (2016) Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 30(6):1116–1121PubMedCrossRefGoogle Scholar
  95. 95.
    Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11(1):e0147236PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mandel P, Metais P (1948) [Not available]. Comptes Rendus des Séances de la Société de Biologie et de Ses Filiales 142(3–4):241–243Google Scholar
  97. 97.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650PubMedGoogle Scholar
  98. 98.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 117(1):1–4CrossRefGoogle Scholar
  100. 100.
    Lazaro-Ibanez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A, Yliperttula M (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74(14):1379–1390PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ronquist GK, Larsson A, Ronquist G, Isaksson A, Hreinsson J, Carlsson L, Stavreus-Evers A (2011) Prostasomal DNA characterization and transfer into human sperm. Mol Reprod Dev 78(7):467–476PubMedCrossRefGoogle Scholar
  102. 102.
    Cai J, Wu G, Jose PA, Zeng C (2016) Functional transferred DNA within extracellular vesicles. Exp Cell Res 349(1):179–183. doi: 10.1016/j.yexcr.2016.10.012. S0014-4827(16)30337-8 [pii]PubMedCrossRefGoogle Scholar
  103. 103.
    Hill AF, Pegtel DM, Lambertz U, Leonardi T, O’Driscoll L, Pluchino S, Ter-Ovanesyan D, Nolte-’t Hoen EN (2013) ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.22859
  104. 104.
    Ronquist KG, Ronquist G, Carlsson L, Larsson A (2009) Human prostasomes contain chromosomal DNA. Prostate 69(7):737–743PubMedCrossRefGoogle Scholar
  105. 105.
    Ronquist GK, Larsson A, Stavreus-Evers A, Ronquist G (2012) Prostasomes are heterogeneous regarding size and appearance but affiliated to one DNA-containing exosome family. Prostate 72(16):1736–1745PubMedCrossRefGoogle Scholar
  106. 106.
    Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, Grundhoff A, Brunswig-Spickenheier B, Alawi M, Lange C (2016) Indication of horizontal DNA Gene transfer by extracellular vesicles. PLoS One 11(9):e0163665PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Qin Z, Ljubimov VA, Zhou C, Tong Y, Liang J (2016) Cell-free circulating tumor DNA in cancer. Chin J Cancer 35:36PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lee TH, Chennakrishnaiah S, Audemard E, Montermini L, Meehan B, Rak J (2014) Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun 451(2):295–301PubMedCrossRefGoogle Scholar
  110. 110.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cai J, Han Y, Ren H, Chen C, He D, Zhou L, Eisner GM, Asico LD, Jose PA, Zeng C (2013) Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol 5(4):227–238PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cai J, Wu G, Tan X, Han Y, Chen C, Li C, Wang N, Zou X, Chen X, Zhou F, He D, Zhou L, Jose PA, Zeng C (2014) Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PLoS One 9(8):e105200PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289(7):3869–3875PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, Shao Y, Gao L, Yin H, Cui C, Tan Z, Liu L, Zhao C, Zhang G, Jia R, Du L, Chen Y, Liu R, Xu J, Hu X (2016) DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 16(1):753PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, Stocchi V (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316(12):1977–1984PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC (2012) Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 7(12):e49767PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Alice Conigliaro
    • 1
    • 2
  • Simona Fontana
    • 2
  • Stefania Raimondo
    • 2
  • Riccardo Alessandro
    • 2
    • 3
  1. 1.Dipartimento di Biotecnologie Cellulari ed EmatologiaSapienza University of RomeRomeItaly
  2. 2.Dipartimento di Biopatologia e Biotecnologie MedicheUniversity of PalermoPalermoItaly
  3. 3.Institute of Biomedicine and Molecular Immunology (IBIM), National Research CouncilPalermoItaly

Personalised recommendations