Advertisement

Performance Analysis of Current-Mode Interconnect System in Presence of Process, Voltage, and Temperature Variations

  • Yash Agrawal
  • Rutu Parekh
  • Rajeevan Chandel
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 436)

Abstract

The present paper analyzes process, voltage and temperature variation effects in current-mode (CM) interconnect system. CM signaling is considered as one of the advanced signaling schemes and effective in achieving high performance in integrated circuits. The impact of variability has been accessed using technology scaling, parametric and process corner analyses. It is analyzed that FF process corner model is the fastest while SS model results in least power dissipation in the circuit. Parametric sensitivity analysis reveals that variation in threshold voltage and supply voltage dominantly impacts the propagation delay and power dissipation, respectively, in the system. The variability effects in CM interconnect system are analyzed for scaled technology nodes from 130 to 32 nm. SPICE is used for simulative analyses.

Keywords

Current-mode signaling On-chip interconnects Process, voltage and temperature (PVT) Variability 

References

  1. 1.
    Unsal, O.S., Tschanz, J.W., Bowman, K., De, V., Vera, X., Gonzlez, A., Ergin, O.: Impact of parameter variations on circuits and microarchitecture. IEEE Micro 26(6), 30–39 (2006)CrossRefGoogle Scholar
  2. 2.
    Achar, R., Nakhla, M.S.: Simulation of high speed interconnects. Proc. IEEE 89(5), 693–728 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Agrawal, Y., Chandel, R.: Crosstalk analysis of current-mode signalling-coupled RLC interconnects using FDTD technique. IETE Tech. Rev. 33(2), 148–159 (2016)CrossRefGoogle Scholar
  4. 4.
    Yuan, F.: CMOS current mode circuits for data communication. Springer, New York (2007)Google Scholar
  5. 5.
    Shoaran, M., Tajalli, A., Alioto, M., Schmid, A., Leblebici, Y.: Analysis and characterization of variability in subthreshold source coupled logic circuits. IEEE Trans. Circuits Syst. 62(2), 458–467 (2015)CrossRefGoogle Scholar
  6. 6.
    Predictive Technology Models. Available: http://ptm.asu.edu (2016)
  7. 7.
    Tunna, S., Nigussie, E., Isoaho, J., Tenhunen, H.: Modeling of energy dissipation in RLC current mode signaling. IEEE Trans. Very Large Scale Integr. Syst. 20(6), 1146–1151 (2011)CrossRefGoogle Scholar
  8. 8.
    International Technology Roadmap for Semiconductors. Available: http://public.itrs.net (2013)
  9. 9.
    Tanner EDA tools for SPICE simulation. Available: http://www.tannereda.com (2016)
  10. 10.
    Anis, M., Allam, M., Elmasry, M.: Impact of technology scaling on CMOS logic styles. IEEE Trans. Circuits Syst. 49(8), 577–588 (2002)CrossRefGoogle Scholar
  11. 11.
    Sakurai, T., Newton, A.R.: Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE J. Solid-State Circuits 25, 584–594 (1990)CrossRefGoogle Scholar
  12. 12.
    Kang, S.M., Leblebici, Y.: CMOS Digit. Integr. Circuits. TMH, New Delhi (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.VLSI & Embedded Systems Research GroupDhirubhai Ambani Institute of Information and Communication TechnologyGanghinagarIndia
  2. 2.Department of Electronics & Communication EngineeringNational Institute of TechnologyHamirpurIndia

Personalised recommendations