Advertisement

Diabetes and Adipocyte Dysfunction

  • Yohko Yoshida
  • Ippei ShimizuEmail author
  • Tohru MinaminoEmail author
Chapter
  • 910 Downloads

Abstract

The global burden of obesity/diabetes and comorbidities continues to rise in many societies. Obesity predisposes to the development of diabetes and increases the mortality rate, particularly deaths from cardiovascular disease. Chronic sterile inflammation develops in visceral white adipose tissue (WAT) upon metabolic stress and promotes the production of pro-inflammatory adipokines and systemic insulin resistance (hyperinsulinemia). Systemic insulin resistance develops with metabolically unhealthy obesity and diabetes and promotes pathologies in these disorders. Studies indicate that cellular senescence is critically involved in the development of sterile adipose inflammation in obesity. In vitro studies showed that senescent cells have bystander effects to promote aging in surrounding younger cells, and depletion of senescent cells by the genetic manipulation or senolytic agents led to the inhibition of age-related organ dysfunction in rodents. Brown adipose tissue (BAT) is another type of fat initially identified and characterized as a tissue involved in thermogenesis. BAT is nowadays well accepted as an active metabolic organ, which has a potential to contribute for the maintenance of systemic metabolic health. In humans and rodents, obesity linked with reduced BAT function and, recently, capillary rarefaction was shown to have causal role for the functional decline of this organ, which led to systemic metabolic disorders in murine obese model. Metabolically healthy obesity (MHO) is characterized with less visceral adiposity associated with nonsignificant metabolic phenotypes. MHO individuals are enriched in subcutaneous WAT, and this specific fat pad is known to include beige cells that share functional similarities with brown adipocytes. The activation of beige cells contributes for systemic metabolic health in rodents, suggesting that in addition to classical brown adipocytes, targeting beige cells would become next-generation therapies for obesity and diabetes. Accumulating evidence indicates that maintenance of homeostasis in adipose tissues is critically important for systemic metabolic health.

Keywords

Cellular senescence Inflammation Adipose tissue Insulin resistance 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research, a Grant-in-Aid for Scientific Research on Innovative Areas (Stem Cell Aging and Disease, Grant number 26115008), and a Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT, Grant number 15K15306) of Japan and grants from the Ono Medical Research Foundation, the Japan Diabetes Foundation, the Takeda Science Foundation, and the Takeda Medical Research Foundation (to T.M.) as well as by a Grants-in-Aid for Young Scientists (Start-up) (JSPS KAKENHI, Grant Number 26893080) and grants from the Uehara Memorial Foundation, Takeda Science Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, Kanae Foundation, Japan Heart Foundation Research Grant, The Senri Life Science Foundation, SENSHIN Medical Research Foundation, ONO Medical Research Foundation, Tsukada Grant for Niigata University Medical Research, The Nakajima Foundation, SUZUKEN memorial foundation, HOKUTO Corporation, Inamori Foundation, Mochida Memorial Foundation for Medical & Pharmaceutical Research, Banyu Foundation Research Grant, Grant for Basic Science Research Projects from The Sumitomo Foundation, Grants-in-Aid for Encouragement of Young Scientists (A) (JSPS KAKENHI Grant Number 16H06244), The Bayer Scholarship for Cardiovascular Research, and Japan Diabetes Foundation (to I.S.), by a Grants-in-Aid for Encouragement of Young Scientists (B) (JSPS KAKENHI Grant Number 16K19531), a Japan Heart Foundation Dr. Hiroshi Irisawa & Dr. Aya Irisawa Memorial Research Grant, Senshin Medical Research Foundation grant, SUZUKEN memorial foundation, Takeda Science Foundation, ONO Medical Research Foundation, Uehara Memorial Foundation, Research Foundation for Community Medicine, Kanae Foundation, Banyu Foundation Research Grant, and HOKUTO Corporation (to Y.Y.) and by a grant from Bourbon (to T.M., I.S., and Y.Y.).

Disclosures: Y.Y., I.S., and T.M. disclose no conflict of interest.

References

  1. 1.
    Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012;15(1):51–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.CrossRefPubMedGoogle Scholar
  3. 3.
    King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65(6):1462–71.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010;120(5):1506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure systematic review of observational studies involving 34,000 patients. Circ Heart Fail. 2013;6(3):395–402.CrossRefPubMedGoogle Scholar
  7. 7.
    Konner AC, Bruning JC. Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 2012;16(2):144–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13(8):707–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRefPubMedGoogle Scholar
  12. 12.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab. 2013;18(5):617–33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR. Cell. 2006;126(1):30–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y, et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 2013;18(4):491–504.CrossRefPubMedGoogle Scholar
  17. 17.
    Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15(9):1082–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Minamino T, Komuro I. Vascular cell senescence: contribution to atherosclerosis. Circ Res. 2007;100(1):15–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Arnlov J, Lind L, Zethelius B, Andren B, Hales CN, Vessby B, et al. Several factors associated with the insulin resistance syndrome are predictors of left ventricular systolic dysfunction in a male population after 20 years of follow-up. Am Heart J. 2001;142(4):720–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell. 2012;11(2):345–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(1):78–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123(8):3404–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65(5):1179–89.CrossRefPubMedGoogle Scholar
  26. 26.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446(7134):444–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014;124(5):2099–112.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29(16):4467–83.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Elias I, Franckhauser S, Ferre T, Vila L, Tafuro S, Munoz S, et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012;61(7):1801–13.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292–308.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J, Liu R, Wang F, Hong J, Li X, Chen M, et al. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat Cell Biol. 2013;15(12):1455–63.CrossRefPubMedGoogle Scholar
  37. 37.
    Schulz TJ, Huang P, Huang TL, Xue RD, McDougall LE, Townsend KL, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495(7441):379–83.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 2012;7(11):e49452.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Carey AL, Vorlander C, Reddy-Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA, et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One. 2014;9(3):e91997.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu Y, Ge X, Dou X, Guo L, Liu Y, Zhou SR, et al. Protein inhibitor of activated STAT 1 (PIAS1) protects against obesity-induced insulin resistance by inhibiting inflammation cascade in adipose tissue. Diabetes. 2015;64(12):4061–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Lakowa N, Trieu N, Flehmig G, Lohmann T, Schon MR, Dietrich A, et al. Telomere length differences between subcutaneous and visceral adipose tissue in humans. Biochem Biophys Res Commun. 2015;457(3):426–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Goncalves CG, Glade MJ, Meguid MM. Metabolically healthy obese individuals: key protective factors. Nutrition. 2016;32(1):14–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Ahl S, Guenther M, Zhao S, James R, Marks J, Szabo A, et al. Adiponectin levels differentiate metabolically healthy vs unhealthy among obese and nonobese white individuals. J Clin Endocr Metab. 2015;100(11):4172–80.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann Intern Med. 2013;159(11):758–69.CrossRefPubMedGoogle Scholar
  46. 46.
    Ortega FB, Lee DC, Katzmarzyk PT, Ruiz JR, Sui X, Church TS, et al. The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness. Eur Heart J. 2013;34(5):389–97.CrossRefPubMedGoogle Scholar
  47. 47.
    Scott RA, Fall T, Pasko D, Barker A, Sharp SJ, Arriola L, et al. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity. Diabetes. 2014;63(12):4378–87.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim JY, De Wall EV, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Investig. 2007;117(9):2621–37.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Yang HK, Han K, Kwon HS, Park YM, Cho JH, Yoon KH, et al. Obesity, metabolic health, and mortality in adults: a nationwide population-based study in Korea. Sci Rep. 2016;6:30329.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47(5):699–713.CrossRefPubMedGoogle Scholar
  52. 52.
    Hwang YC, Hayashi T, Fujimoto WY, Kahn SE, Leonetti DL, McNeely MJ, et al. Visceral abdominal fat accumulation predicts the conversion of metabolically healthy obese subjects to an unhealthy phenotype. Int J Obes. 2015;39(9):1365–70.CrossRefGoogle Scholar
  53. 53.
    Morkedal B, Vatten LJ, Romundstad PR, Laugsand LE, Janszky I. Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals. J Am Coll Cardiol. 2014;63(11):1071–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Arch JR. beta(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol. 2002;440(2–3):99–107.CrossRefPubMedGoogle Scholar
  55. 55.
    Buemann B, Toubro S, Astrup A. Effects of the two beta3-agonists, ZD7114 and ZD2079 on 24 hour energy expenditure and respiratory quotient in obese subjects. Int J Obes Relat Metab Disord. 2000;24(12):1553–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 2010;11(3):206–12.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wei W, Dutchak PA, Wang X, Ding X, Bookout AL, Goetz R, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A. 2012;109(8):3143–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–62.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17(5):638–43.CrossRefPubMedGoogle Scholar
  65. 65.
    Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature. 2014;510(7503):76–83.CrossRefPubMedGoogle Scholar
  66. 66.
    Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, et al. PPAR gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6(2):137–43.CrossRefPubMedGoogle Scholar
  67. 67.
    Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, et al. Antidiabetic actions of a non-agonist PPAR gamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011;477(7365):477–U131.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPAR gamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Cardiovascular Biology and MedicineNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Division of Molecular Aging and Cell BiologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan

Personalised recommendations