Advertisement

Diabetes and Endothelial Dysfunction

  • Tatsuya MaruhashiEmail author
  • Yasuki Kihara
  • Yukihito HigashiEmail author
Chapter
  • 957 Downloads

Abstract

In patients with diabetes mellitus, endothelial dysfunction is the initial step in the process of atherosclerosis and plays an important role in the development of this condition, leading to diabetic vascular complications. Oxidative stress induced by hyperglycemia and acute glucose fluctuations are associated with endothelial dysfunction through inactivating nitric oxide (NO) by excess production of reactive oxygen species (ROS). Under the condition of insulin resistance, NO production is selectively impaired, whereas endothelin-1 (ET-1) secretion is preferentially activated in endothelial cells, leading to endothelial dysfunction in obese or overweight diabetic patients. On the other hand, endothelial dysfunction might contribute to insulin resistance in skeletal muscle. Reduced NO production through oxidative stress and selective insulin resistance in endothelial cells contributes to decreased glucose uptake by skeletal muscle due to a delayed increase in insulin concentration in the interstitium of the skeletal muscle. Therefore, insulin resistance is further exacerbated through a vicious cycle of endothelial dysfunction and reduced glucose uptake by skeletal muscle. From a clinical perspective, it is important to select an appropriate intervention that is effective in improving endothelial dysfunction for treatment of patients with diabetes mellitus.

In addition to lifestyle modifications, antidiabetic agents that improve insulin sensitivity are anticipated to improve endothelial function and prevent cardiovascular events in patients with diabetes mellitus.

Keywords

Endothelial function Diabetes mellitus Oxidative stress Insulin resistance 

References

  1. 1.
    Bardenheier BH, Lin J, Zhuo X, Ali MK, Thompson TJ, Cheng YJ, et al. Disability-free life-years lost among adults aged >/=50 years with and without diabetes. Diabetes Care. 2016;39(7):1222–9. doi: 10.2337/dc15-1095.CrossRefPubMedGoogle Scholar
  2. 2.
    Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S14–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8. doi: 10.1161/01.CIR.0000153339.27064.14.CrossRefPubMedGoogle Scholar
  5. 5.
    Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Henry RM, Ferreira I, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, et al. Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not; The Hoorn Study. Atherosclerosis. 2004;174(1):49–56. doi: 10.1016/j.atherosclerosis.2004.01.002.CrossRefPubMedGoogle Scholar
  7. 7.
    Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323(1):27–36. doi: 10.1056/NEJM199007053230106.CrossRefPubMedGoogle Scholar
  8. 8.
    McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(8):771–6.PubMedGoogle Scholar
  9. 9.
    Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88(6):2510–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 37a–37d. doi: 10.1093/eurheartj/ehr304.
  11. 11.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. doi: 10.1038/414813a.CrossRefPubMedGoogle Scholar
  12. 12.
    Ceriello A. The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. Diabet Med. 1998;15(3):188–93. doi: 10.1002/(SICI)1096-9136(199803)15:3<188::AID-DIA545>3.0.CO;2-V.CrossRefPubMedGoogle Scholar
  13. 13.
    Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001;281(5):E924–30.PubMedGoogle Scholar
  14. 14.
    Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795–804.CrossRefPubMedGoogle Scholar
  15. 15.
    Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7. doi: 10.1001/jama.295.14.1681.CrossRefPubMedGoogle Scholar
  16. 16.
    Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013;12:1. doi: 10.1186/1475-2840-12-1.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100(8):820–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752–64. doi: 10.1007/s00125-009-1313-z.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Laakso M, Edelman SV, Brechtel G, Baron AD. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992;41(9):1076–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. doi: 10.1056/NEJMoa052187.CrossRefPubMedGoogle Scholar
  22. 22.
    Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86. doi: 10.2337/db14-0694.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fujishima S, Ohya Y, Nakamura Y, Onaka U, Abe I, Fujishima M. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens. 1998;11(9):1134–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Hidaka T, Nakagawa K, Goto C, Soga J, Fujii Y, Hata T, et al. Pioglitazone improves endothelium-dependent vasodilation in hypertensive patients with impaired glucose tolerance in part through a decrease in oxidative stress. Atherosclerosis. 2010;210(2):521–4. doi: 10.1016/j.atherosclerosis.2009.12.011.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes. 2002;51(10):2968–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12. doi: 10.1186/1475-2840-9-12.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77(5):1337–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110. doi: 10.1186/s12933-014-0110-2.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91(3):837–42. doi: 10.1210/jc.2005-1566.CrossRefPubMedGoogle Scholar
  32. 32.
    Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1):e003277. doi: 10.1161/JAHA.112.003277.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maruhashi T, Higashi Y, Kihara Y, Yamada H, Sata M, Ueda S, et al. Long-term effect of sitagliptin on endothelial function in type 2 diabetes: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol. 2016;15(1):134. doi: 10.1186/s12933-016-0438-x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93. doi: 10.1056/NEJMoa021778.CrossRefPubMedGoogle Scholar
  35. 35.
    Higashi Y, Sasaki S, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S, et al. A comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol. 2000;35(2):284–91.CrossRefPubMedGoogle Scholar
  36. 36.
    Ghiadoni L, Virdis A, Magagna A, Taddei S, Salvetti A. Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension. 2000;35(1 Pt 2):501–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003;23(5):729–36. doi: 10.1161/01.ATV.0000063385.12476.A7.CrossRefPubMedGoogle Scholar
  38. 38.
    Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100(11):1194–202.CrossRefPubMedGoogle Scholar
  39. 39.
    Sasaki S, Higashi Y, Nakagawa K, Kimura M, Noma K, Sasaki S, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens. 2002;15(4 Pt 1):302–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Cardiovascular Medicine, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
  3. 3.Division of Regeneration and Medicine, Medical Center for Translational and Clinical ResearchHiroshima University HospitalHiroshimaJapan

Personalised recommendations