Effect of H64V Mutation on the Dynamical Properties of Human Neuroglobin: A Simulation Study

  • T. L. Quyen Bui
  • V. Tuyen Hoang
  • T.-L. Hoai Nguyen
  • V. Thanh Ngo
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 63)


In this work, we present a classical molecular dynamical simulation of human neuroglobin (Ngb) proteins with and without mutation at the distal position. Our aim is to investigate the role of the distal residue in the stability of Ngb. The simulation has been performed using Gromacs software with Gromos96 force field. We designed a mutant Ngb by mutating histidine His64 residue to valine residue. The results showed that, the mutant H64V would lead to the less stability in the inner structure of the proteins. Moreover, the mutation strongly affects the properties of the heme group. Obvious changes in the high-order structure of the mutant protein can also be observed.


Neuroglobin Mutation MD simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Lotus program, Grand No. 45/2012/HD-NDT. We thank S. Bernad and V. Derrien for fruitfully discussion, and A-.T-.V. Nguyen for carefully reading of the manuscript.


  1. 1.
    Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520CrossRefGoogle Scholar
  2. 2.
    Brunori M, Vallone B (2006) A globin for the brain. FASEB J 20:2192CrossRefGoogle Scholar
  3. 3.
    Brunori M, Vallone B (2007) Neuroglobin, seven years after. Cell Mol Life Sci 64:1259CrossRefGoogle Scholar
  4. 4.
    Nienhaus K, Nienhaus GU (2007) Searching for neuroglobin's role in the brain. IUBMB Life 59:490CrossRefGoogle Scholar
  5. 5.
    Burmester T, Hankeln T (2009) What is the function of neuroglobin?. J Exp Biol 212:1423CrossRefGoogle Scholar
  6. 6.
    Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276:38949CrossRefGoogle Scholar
  7. 7.
    Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11:1087–1095CrossRefGoogle Scholar
  8. 8.
    Pesce A, Dewilde S, Nardini M, Dewilde S, Moens L, Hankeln T, Burmester T, Ascenzi P, Bolognesi M (2004) Reversible hexa- to penta-coordination of the heme Fe atom modulatesligand binding properties of neuroglobin and cytoglobin. IUBMB Life 56:657CrossRefGoogle Scholar
  9. 9.
    Vallone B, Nienhaus K, Brunori M, Nienhaus GU (2004) The structure of murine neuroglobin: novel pathways for ligand migration and binding. Proteins 56:85–92CrossRefGoogle Scholar
  10. 10.
    Bocahut A, Bernad S, Sebban P, Sacquin-Mora S (2009) Relating the diffusion of small ligands in human neuroglobin to its structural and mechanical properties. J Phys Chem B 113:16257CrossRefGoogle Scholar
  11. 11.
    Hamdane D, Kiger L, Dewilde D, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L et al (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278:51713CrossRefGoogle Scholar
  12. 12.
    Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2004) Coupling of the heme and an internal disulfide bond in human neuroglobin. Micron 35:59CrossRefGoogle Scholar
  13. 13.
    Vinck E, Van Doorslaer S, Dewilde S, Moens L (2004) Structural change of the heme pocket due to disulfide bridge formation is significantly larger for neuroglobin than for cytoglobin. J Am Chem Soc 126:4516CrossRefGoogle Scholar
  14. 14.
    Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J (2010) Probing the role of the internal disulfide bond in regulating conformational dynamics in neuroglobin. Biophys J 99:L16–L18CrossRefGoogle Scholar
  15. 15.
    Guimarães BG, Hamdane D, Lechauve C, Marden MC, Golinelli-Pimpaneau B (2014) The crystal structure of wild-type human brain neuroglobin reveals flexibility of the disulfide bond that regulates oxygen affinity. Acta Cryst D 70:1005CrossRefGoogle Scholar
  16. 16.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Molec Graph 14:33–38CrossRefGoogle Scholar
  17. 17.
    Emsley P, Lohkamp B, Scott W, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486CrossRefGoogle Scholar
  18. 18.
    Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29(7):845–854. Abraham MJ, van der Spoel D, Lindahl E, Hess B, The GROMACS development team (2015) GROMACS User Manual version 5.1.
  19. 19.
    Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • T. L. Quyen Bui
    • 1
  • V. Tuyen Hoang
    • 2
  • T.-L. Hoai Nguyen
    • 2
  • V. Thanh Ngo
    • 2
  1. 1.Thai Binh University of Medicine and PharmacyThai BinhVietnam
  2. 2.Institute of PhysicsVASTBa Dinh, HanoiVietnam

Personalised recommendations