Advertisement

Plant Breeding

  • P. Parvatha Reddy
Chapter

Abstract

The most effective, practical, and cheapest method of managing pests and diseases is probably by the use of resistant cultivars. Breakdown of plant resistance due to evolution of new races of pathogen/pest is one of the most important drawbacks. In widespread and protracted agriculture, there are many examples of resistant varieties which have continued to give a good control of pests and diseases. Breeding for a very high level of resistance is always not desirable, since partial resistance has often given adequate degree of management under field conditions, especially when such resistance has been integrated with other management approaches. Crops with transgenic resistance to herbivores, diseases, and tolerance to weeds have been developed in commercial crops like Zea mays, Gossypium spp., Glycine max, and Solanum tuberosum which are being cultivated in large areas throughout the world.

Keywords

Breeding Organic farming Pest resistance Transgenic crops Insect pests Diseases Nematodes Weeds 

References

  1. Agrios GN (2005) Plant pathology, 5th edn. Academic, London. ISBN:978-0120445653
  2. Barbosa P (1998) Conservation biological control. Academic, San DiegoGoogle Scholar
  3. Birch ANE, Begg GS, Squire GR (2011) How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J Exp Bot 62:3251–3261CrossRefGoogle Scholar
  4. Blazkova V, Bartos P (2002) Virulence pattern of European bunt samples (Tilletia tritici and T. laevis) and sources of resistance. Cereal Res Commun 30:335–342Google Scholar
  5. Bond W, Grundy AC (2001) Non-chemical weed management in organic farming systems. Weed Res 41:383–405CrossRefGoogle Scholar
  6. Castle LA, Wu G, McElroy D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17:105–112CrossRefPubMedGoogle Scholar
  7. Ciuca M, Saulescu NN (2008) Screening Romanian winter wheat germplasm for presence of Bt10 bunt resistance gene, using molecular markers. Rom Agric Res 25:1–5Google Scholar
  8. Donald P (1998) Managing nematodes in gardens. Horticultural MU guide-vegetables, outreach & extension, University of Missouri, Columbia GA 6204. http://extension.missouri.edu/explorepdf/agguides/hort/g06204.pdf
  9. Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194CrossRefGoogle Scholar
  10. Faustini F, Paolini R (2005) Organically grown durum wheat (Triticum durum Desf.) varieties under different intensity and time of mechanical weed control. In: Proceedings of the 13th EWRS symposium, Bari, Italy, CD-ISBN:90-809789r-r1-4Google Scholar
  11. Fofana B, Humphreys DG, Cloutier S, McCartney CA, Somers DJ (2008) Mapping quantitative trait loci controlling common bunt resistance in a doubled haploid population derived from the spring wheat cross RL4452 × AC domain. Mol Breed 21:317–325CrossRefGoogle Scholar
  12. Fuchs M, Tricoli DM, Carney KJ, Schesser M, McFerson JR, Gonsalves D (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356CrossRefGoogle Scholar
  13. Hagan A, Gazaway W, Sikora E (1998) Nematode suppressive crops. Alabama cooperative extension system (Alabama A&M University and Auburn University) ANR-856. http://www.aces.edu/pubs/docs/A/ANR-0856/
  14. Hakizimana F, Haley SD, Turnipseed EB (2000) Repeatability and genotype × environment interaction of coleoptile length measurements in winter wheat. Crop Sci 40:1233–1237CrossRefGoogle Scholar
  15. Hall TJ (1980) Resistance at the TM-s locus in the tomato to tomato mosaic-virus. Euphytica 29:189–197CrossRefGoogle Scholar
  16. Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436CrossRefPubMedGoogle Scholar
  17. Krauss M, Berner A, Burger D, Wiemken A, Niggli U, Mäder P (2010) Reduced tillage in temperate organic farming: implications for crop management and forage production. Soil Use Manag 26:12–20CrossRefGoogle Scholar
  18. Leung H, Zhu Y, Revilla-Molina I, Fan JX, Chen H, Pangga I, Vera Cruz CM, Mew TW (2003) Using genetic diversity to achieve sustainable rice disease management. Plant Dis 87:1156–1169CrossRefGoogle Scholar
  19. McSorley R (1999) Host suitability of potential cover crops for root-knot nematodes. J Nematol 31:619–623PubMedPubMedCentralGoogle Scholar
  20. Murphy K, Dawson J, Jones SS (2008) Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crop Res 105:107–115CrossRefGoogle Scholar
  21. Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crop Res 102:172–177CrossRefGoogle Scholar
  22. Naimov S, Stefan Dukiandjiev S, de Maagd RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57CrossRefPubMedGoogle Scholar
  23. Pande S, Narayan Rao J, Upadhyaya HD, Lene JM (2001) Farmer’s participatory integrated management of foliar diseases of groundnut. Int J Pest Manag 47:121–126CrossRefGoogle Scholar
  24. Parvatha Reddy P (2008) Organic farming for sustainable horticulture. Scientific Publishers (India), JodhpurGoogle Scholar
  25. Pathak MD, Khan ZR (1994) Insect pests of rice. International Rice Research Institute, Manila, pp 5–6Google Scholar
  26. Pelham J (1966) Resistance in tomato to tobacco mosaic virus. Euphytica 15:258–267CrossRefGoogle Scholar
  27. Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: global and European perspectives on their ability to reduce pesticide use. J Anim Feed Sci 11:1–18CrossRefGoogle Scholar
  28. Reddy DVR (1998) Control measures for the economically important peanut viruses. In: Hadidi A, Khetarpal RK, Koganezawa H (eds) Plant virus disease control. APS Press, St Paul, pp 541–546Google Scholar
  29. Roberti R, Veronesi A, Cesari A, Cascone A, Di Berardino I, Bertini L, Caruso C (2008) Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Sci 175:339–347CrossRefGoogle Scholar
  30. Sari E, Etebarian HR, Aminian H (2008) Effects of Pseudomonas fluorescens CHA0 on the resistance of wheat seedling roots to the take-all fungus Gaeumannomyces graminis var. tritici. Plant Prod Sci 11:298–306CrossRefGoogle Scholar
  31. Singh HP, Malhotra SK (2013) Trend of horticultural research, particularly in vegetables in India and its regional prospects. In: Proceedings of the regional symposium on high value vegetables in Southeast Asia: production, supply and demand (SEAVEG 2012). Bangkok, pp 321–343Google Scholar
  32. Tonguç M, Griffiths PD (2004) Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A 19182, using embryo rescue. Euphytica 136:313–318CrossRefGoogle Scholar
  33. Vaughn SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:2107–2116CrossRefGoogle Scholar
  34. Voorrips RE, Steenhuis-Broers G, Tiemens-Hulscher M, van Bueren ETL (2008) Plant traits associated with resistance to Thrips tabaci in cabbage (Brassica oleracea var. capitata). Euphytica 163:409–415CrossRefGoogle Scholar
  35. Wächter R, Waldow F, Müller KJ, Spiess H, Heyden B, Furth U, Frahm J, Weng W, Miedaner T, Stephan D, Koch E (2007) Charakterisierung der Resistenz von Winterweizensorten und -zuchtlinien gegenüber Steinbrand (Tilletia tritici) und Zwergsteinbrand (T. controversa). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 59:30–39Google Scholar
  36. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizoshere-related traits. Plant Soil 321:409–430CrossRefGoogle Scholar
  37. Wolfe MS, Baresel JP, Desclaux D, Goldringer I, Hoad S, Kovacs G, Löschenberger F, Miedaner T, Østergård H, Lammerts van Bueren ET (2008) Developments in breeding cereals for organic agriculture. Euphytica 163:323–346CrossRefGoogle Scholar
  38. Wu H, Pratley J, Lemerle D, Haig T (1999) Crop cultivars with allelopathic capability. Weed Res 39:171–180CrossRefGoogle Scholar
  39. Wu H, Pratley J, Lemerle D, Haig T (2000) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agric Res 51:259–266CrossRefGoogle Scholar
  40. Yadav JS, Ogwok E, Wagaba H, Patil BL, Bagewadi B, Alicai T, Gaitan-Solis E, Taylor NJ, Fauquet CM (2011) RNAi-mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Mol Plant Pathol 12:677–687CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ptd. 2017

Authors and Affiliations

  • P. Parvatha Reddy
    • 1
  1. 1.Indian Institute of Horticultural ResearchBengaluruIndia

Personalised recommendations