The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling

  • Ivan Varga
  • Jan Kyselovič
  • Paulina Galfiova
  • Lubos Danisovic
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 999)

Abstract

The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of “connecting cell” that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ’s well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.

Keywords

Non-cardiomyocyte Cells Exercise Regeneration Remodeling 

References

  1. 1.
    Uygur A, Lee RT (2016) Mechanisms of cardiac regeneration. Dev Cell 36(4):362–374PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Pinto AR, Ilinykh A, Ivey MJ et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409PubMedCrossRefGoogle Scholar
  3. 3.
    Lerchenmüller C, Rosenzweig A (2014) Mechanisms of exercise-induced cardiac growth. Drug Discov Today 19(7):1003–1009PubMedCrossRefGoogle Scholar
  4. 4.
    Furtado MB, Nim HT, Boyd SE et al (2016) View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143(3):387–397PubMedCrossRefGoogle Scholar
  5. 5.
    Snider P, Standley KN, Wang J et al (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105(10):934–947PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    von Gise A, Pu WT (2012) Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110(12):1628–1645CrossRefGoogle Scholar
  7. 7.
    Braitsch CM, Yutzey KE (2013) Transcriptional control of cell lineage development in epicardium-derived cells. J Dev Biol 1(2):92–111PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ko SD, Page RC, Narayanan AS (1977) Fibroblast heterogeneity and prostaglandin regulation of subpopulations. Proc Natl Acad Sci U S A 74(8):3429–3432PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bordin S, Page RC, Narayanan AS (1984) Heterogeneity of normal human diploid fibroblasts: isolation and characterization of one phenotype. Science 223(4632):171–173PubMedCrossRefGoogle Scholar
  10. 10.
    Angello JC, Pendergrass WR, Norwood TH et al (1987) Proliferative potential of human fibroblasts: an inverse dependence on cell size. J Cell Physiol 132(1):125–130PubMedCrossRefGoogle Scholar
  11. 11.
    Strutz F, Okada H, Lo CW et al (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405PubMedCrossRefGoogle Scholar
  12. 12.
    Ivey MJ, Tallquist MD (2016) Defining the cardiac fibroblast. Circ J 80(11):2269–2276PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tillmanns J, Hoffmann D, Habbaba Y et al (2015) Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol 87:194–203PubMedCrossRefGoogle Scholar
  14. 14.
    Travers JG, Kamal FA, Robbins J et al (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Moore-Morris T, Guimarães-Camboa N, Banerjee I et al (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124(7):2921–2934PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Braitsch CM, Kanisicak O, van Berlo JH et al (2013) Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol 65:108–119PubMedCrossRefGoogle Scholar
  17. 17.
    Noseda M, Harada M, McSweeney S et al (2015) PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun 6:6930PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bowers SL, Banerjee I, Baudino TA (2010) The extracellular matrix: at the center of it all. J Mol Cell Cardiol 48(3):474–482PubMedCrossRefGoogle Scholar
  19. 19.
    Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223–253PubMedCrossRefGoogle Scholar
  20. 20.
    Burgess ML, Terracio L, Hirozane T et al (2002) Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovasc Pathol 11(2):78–87PubMedCrossRefGoogle Scholar
  21. 21.
    Raffetto JD, Khalil RA (2008) Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr Vasc Pharmacol 6(3):158–172PubMedCrossRefGoogle Scholar
  22. 22.
    Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brown RD, Ambler SK, Mitchell MD et al (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687PubMedCrossRefGoogle Scholar
  24. 24.
    Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Banerjee I, Yekkala K, Borg TK et al (2006) Dynamic interactions between myocytes, fibroblasts, and extracellular matrix. Ann N Y Acad Sci 1080:76–84PubMedCrossRefGoogle Scholar
  26. 26.
    Louault C, Benamer N, Faivre JF et al (2008) Implication of connexins 40 and 43 in functional coupling between mouse cardiac fibroblasts in primary culture. Biochim Biophys Acta 1778(10):2097–2104PubMedCrossRefGoogle Scholar
  27. 27.
    Baudino TA, McFadden A, Fix C et al (2008) Cell patterning: interaction of cardiac myocytes and fibroblasts in three-dimensional culture. Microsc Microanal 14(2):117–125PubMedCrossRefGoogle Scholar
  28. 28.
    Murakami M, Simons M (2008) Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15(3):215–220PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rychli K, Kaun C, Hohensinner PJ et al (2010) The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts. J Cell Mol Med 14(1–2):198–205PubMedCrossRefGoogle Scholar
  30. 30.
    Rusu MC, Pop F, Hostiuc S et al (2012) Telocytes form networks in normal cardiac tissues. Histol Histopathol 27(6):807–816PubMedGoogle Scholar
  31. 31.
    Tao L, Wang H, Wang X et al (2016) Cardiac telocytes. Curr Stem Cell Res Ther 11(5):404–409PubMedCrossRefGoogle Scholar
  32. 32.
    Kucybala I, Janas P, Ciuk S et al (2017) A comprehensive guide to telocytes and their great potential in cardiovascular system. Bratisl Lek Listy 118(5):302–309PubMedGoogle Scholar
  33. 33.
    Cantarero I, Luesma MJ, Alvarez-Dotu JM et al (2016) Transmission electron microscopy as key technique for the characterization of telocytes. Curr Stem Cell Res Ther 11(5):410–414PubMedCrossRefGoogle Scholar
  34. 34.
    Kostin S (2010) Myocardial telocytes: a specific new cellular entity. J Cell Mol Med 14(7):1917–1921PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bei Y, Zhou Q, Fu S et al (2015) Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One 10(2):e0115991PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chang Y, Li C, Lu Z et al (2015) Multiple immunophenotypes of cardiac telocytes. Exp Cell Res 338(2):239–244PubMedCrossRefGoogle Scholar
  37. 37.
    Faussone-Pellegrini MS, Bani D (2010) Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med 14(5):1061–1063PubMedPubMedCentralGoogle Scholar
  38. 38.
    Federative International Committee on Anatomical Terminology (2008) Terminologia Histologica: international terms for human cytology and histology. Lippincott Williams & Wilkins, 300 ppGoogle Scholar
  39. 39.
    Díaz-Flores L, Gutiérrez R, García MP et al (2014) CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol 29(7):831–870PubMedGoogle Scholar
  40. 40.
    Rusu MC, Hostiuc S, Vrapciu AD et al (2017) Subsets of telocytes: myocardial telocytes. Ann Anat 209:37–44PubMedCrossRefGoogle Scholar
  41. 41.
    Fertig ET, Gherghiceanu M, Popescu LM (2014) Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med 18(10):1938–1943PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cismaşiu VB, Popescu LM (2015) Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med 19(2):351–358PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Popescu LM, Manole CG, Gherghiceanu M et al (2010) Telocytes in human epicardium. J Cell Mol Med 14(8):2085–2093PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gherghiceanu M, Manole CG, Popescu LM (2010) Telocytes in endocardium: electron microscope evidence. J Cell Mol Med 14(9):2330–2334PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Liu JJ, Shen XT, Zheng X et al (2011) Distribution of telocytes in the rat heart. J Clin Rehabil Tiss Eng Res 15:3546–3548Google Scholar
  46. 46.
    Yang Y, Sun W, Wu SM et al (2014) Telocytes in human heart valves. J Cell Mol Med 18(5):759–765PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Popescu LM, Curici A, Wang E et al (2015) Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 19(1):31–45PubMedCrossRefGoogle Scholar
  48. 48.
    Gherghiceanu M, Popescu LM (2010) Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med 14(4):871–877PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhou J, Wang Y, Zhu P et al (2014) Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues. Sci China Life Sci 57(2):241–247PubMedCrossRefGoogle Scholar
  50. 50.
    Bei Y, Wang F, Yang C et al (2015) Telocytes in regenerative medicine. J Cell Mol Med 19(7):1441–1454PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bursac N (2012) Colonizing the heart from the epicardial side. Stem Cell Res Ther 3(2):15PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Richter M, Kostin S (2015) The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med 19(11):2597–2606PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zhao B, Liao Z, Chen S et al (2014) Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med 18(5):780–789PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Manole CG, Cismaşiu V, Gherghiceanu M et al (2011) Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 15(11):2284–2296PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bei Y, Zhou Q, Sun Q et al (2016) Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 55:14–21PubMedCrossRefGoogle Scholar
  56. 56.
    Fu S, Zhu H, Li S et al (2016) Telocytes in cardiac protection. Curr Stem Cell Res Ther 11(5):390–394PubMedCrossRefGoogle Scholar
  57. 57.
    Xiao J, Chen P, Qu Y et al (2016) Telocytes in exercise-induced cardiac growth. J Cell Mol Med 20(5):973–979PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Booth A, Magnuson A, Fouts J et al (2016) Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig 26(1):25–42PubMedGoogle Scholar
  59. 59.
    Varga I, Miko M, Oravcová L et al (2015) Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells. Cell Tissue Bank 16(4):639–647PubMedCrossRefGoogle Scholar
  60. 60.
    Oishi Y, Manabe I (2016) Integrated regulation of the cellular metabolism and function of immune cells in adipose tissue. Clin Exp Pharmacol Physiol 43(3):294–303PubMedCrossRefGoogle Scholar
  61. 61.
    Xu Y, Cheng X, Hong K et al (2012) How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis 23(4):227–233PubMedCrossRefGoogle Scholar
  62. 62.
    Iacobellis G, Barbaro G (2008) The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res 40(7):442–445PubMedCrossRefGoogle Scholar
  63. 63.
    Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22(11):450–457PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shin SY, Yong HS, Lim HE et al (2011) Total and interatrial epicardial adipose tissues are independently associated with left atrial remodeling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 22(6):647–655PubMedCrossRefGoogle Scholar
  65. 65.
    Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153(6):907–917PubMedCrossRefGoogle Scholar
  66. 66.
    Imoto-Tsubakimoto H, Takahashi T, Ueyama T et al (2013) Serglycin is a novel adipocytokine highly expressed in epicardial adipose tissue. Biochem Biophys Res Commun 432(1):105–110PubMedCrossRefGoogle Scholar
  67. 67.
    Nishida M, Funahashi T, Shimomura I (2007) Pathophysiological significance of adiponectin. Med Mol Morphol 40(2):55–67PubMedCrossRefGoogle Scholar
  68. 68.
    Skurk C, Wittchen F, Suckau L et al (2008) Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. Eur Heart J 29(9):1168–1180PubMedCrossRefGoogle Scholar
  69. 69.
    Aprahamian TR, Sam F (2011) Adiponectin in cardiovascular inflammation and obesity. Int J Inflam 2011:376909PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Villarreal-Molina MT, Antuna-Puente B (2012) Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie 94(10):2143–2149PubMedCrossRefGoogle Scholar
  71. 71.
    Takahashi T, Saegusa S, Sumino H et al (2005) Adiponectin, T-cadherin and tumour necrosis factor-alpha in damaged cardiomyocytes from autopsy specimens. J Int Med Res 33(2):236–244PubMedCrossRefGoogle Scholar
  72. 72.
    Takano H, Obata JE, Kodama Y et al (2009) Adiponectin is released from the heart in patients with heart failure. Int J Cardiol 132(2):221–226PubMedCrossRefGoogle Scholar
  73. 73.
    Yin WH, Wei J, Huang WP et al (2012) Prognostic value of circulating adipokine levels and expressions of adipokines in the myocardium of patients with chronic heart failure. Circ J 76(9):2139–2147PubMedCrossRefGoogle Scholar
  74. 74.
    Tamura T, Furukawa Y, Taniguchi R et al (2007) Serum adiponectin level as an independent predictor of mortality in patients with congestive heart failure. Circ J 71(5):623–630PubMedCrossRefGoogle Scholar
  75. 75.
    Wu FZ, Huang YL, Wu CC et al (2016) Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits. Medicine (Baltimore) 95(5):e2616PubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rabkin SW, Campbell H (2015) Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev 16(5):406–415PubMedCrossRefGoogle Scholar
  77. 77.
    Kierszenbaum AL, Tres LL (2016) Histology and cell biology. An Intrduction to Pathology. Fourth Edition, Elsevier Inc, 734 ppGoogle Scholar
  78. 78.
    Janicki JS, Brower GL, Levick SP (2015) The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 1220:121–139PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Marone G, de Crescenzo G, Adt M et al (1995) Immunological characterization and functional importance of human heart mast cells. Immunopharmacology 31(1):1–18PubMedCrossRefGoogle Scholar
  80. 80.
    Walls AF, Amalinei C (2014) Detection of mast cells and basophils by immunohistochemistry. Methods Mol Biol 1192:117–134PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou Y, Pan P, Yao L et al (2010) CD117-positive cells of the heart: progenitor cells or mast cells? J Histochem Cytochem 58(4):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Varga I, Danisovic L, Kyselovic J et al (2016) The functional morphology and role of cardiac telocytes in myocardium regeneration. Can J Physiol Pharmacol 94:1117–1121CrossRefGoogle Scholar
  83. 83.
    Pawlina W (2016) Histology with correlated cell and molecular biology. A Text and Atlas. Seventh Edition, Wolters Kluwer Health, 984 ppGoogle Scholar
  84. 84.
    Reid AC, Silver RB, Levi R (2007) Renin: at the heart of the mast cell. Immunol Rev 217:123–140PubMedCrossRefGoogle Scholar
  85. 85.
    Levick SP, Meléndez GC, Plante E et al (2011) Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 89(1):12–19PubMedCrossRefGoogle Scholar
  86. 86.
    Janicki JS, Brower GL, Gardner JD et al (2006) Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload. Cardiovasc Res 69(3):657–665PubMedCrossRefGoogle Scholar
  87. 87.
    Levick SP, McLarty JL, Murray DB et al (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53(6):1041–1047PubMedCrossRefGoogle Scholar
  88. 88.
    Balakumar P, Singh AP, Ganti SS et al (2008) Resident cardiac mast cells: are they the major culprit in the pathogenesis of cardiac hypertrophy? Basic Clin Pharmacol Toxicol 102(1):5–9PubMedGoogle Scholar
  89. 89.
    Mandal R, Brooks EG, Corliss RF (2015) Eosinophilic coronary periarteritis with arterial dissection: the mast cell hypothesis. J Forensic Sci 60(4):1088–1092PubMedCrossRefGoogle Scholar
  90. 90.
    Phungphong S, Kijtawornrat A, Wattanapermpool J et al (2016) Regular exercise modulates cardiac mast cell activation in ovariectomized rats. J Physiol Sci 66(2):165–173PubMedCrossRefGoogle Scholar
  91. 91.
    McLarty JL, Meléndez GC, Spencer WJ et al (2011) Isolation of functional cardiac immune cells. J Vis Exp 58:e3020Google Scholar
  92. 92.
    Smorodinova N, Bláha M, Melenovský V et al (2017) Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One 12(2):e0172691PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cohen HB, Mosser DM (2014) Cardiac macrophages: how to mend a broken heart. Immunity 40(1):3–5PubMedCrossRefGoogle Scholar
  94. 94.
    Fujiu K, Wang J, Nagai R (2014) Cardioprotective function of cardiac macrophages. Cardiovasc Res 102(2):232–239PubMedCrossRefGoogle Scholar
  95. 95.
    Swirski FK, Robbins CS, Nahrendorf M (2016) Development and function of arterial and cardiac macrophages. Trends Immunol 37(1):32–40PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Leor J, Palevski D, Amit U et al (2016) Macrophages and regeneration: lessons from the heart. Semin Cell Dev Biol 58:26–33PubMedCrossRefGoogle Scholar
  97. 97.
    Azzawi M, Kan SW, Hillier V et al (2005) The distribution of cardiac macrophages in myocardial ischaemia and cardiomyopathy. Histopathology 46(3):314–319PubMedCrossRefGoogle Scholar
  98. 98.
    Hulsmans M, Sam F, Nahrendorf M (2016) Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 93:149–155PubMedCrossRefGoogle Scholar
  99. 99.
    Patel B, Ismahil MA, Hamid T et al (2017) Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLoS One 12(1):e0170781PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res 102(2):240–248PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Botta A, Laher I, Beam J et al (2013) Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS One 8(8):e70248PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Andries LJ, Brutsaert DL (1991) Differences in structure between endocardial and vascular endothelium. J Cardiovasc Pharmacol 17(Suppl. 3):S243–S246CrossRefGoogle Scholar
  103. 103.
    Brutsaert DL, Andries LJ (1992) The endocardial endothelium. Am J Phys 263(4 Pt 2):H985–1002Google Scholar
  104. 104.
    Noireaud J, Andriantsitohaina R (2014) Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. Biomed Res Int 1:923805Google Scholar
  105. 105.
    Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83(1):59–115PubMedCrossRefGoogle Scholar
  106. 106.
    Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  107. 107.
    Rauscher FM, Goldschmidt-Clermont PJ, Davis BH et al (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108(4):457–463PubMedCrossRefGoogle Scholar
  108. 108.
    Rehman J, Li J, Parvathaneni L et al (2015) Exercise acutely increases circulating endothelial progenitor cells and monocyte−/macrophage-derived angiogenic cells. J Am Coll Cardiol 43(12):2314–2318CrossRefGoogle Scholar
  109. 109.
    Adams V, Lenk K, Linke A et al (2004) Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 24(4):684–690PubMedCrossRefGoogle Scholar
  110. 110.
    Pearson MJ, Smart NA (2017) Effect of exercise training on endothelial function in heart failure patients: a systematic review meta-analysis. Int J Cardiol 231:234–243PubMedCrossRefGoogle Scholar
  111. 111.
    Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  112. 112.
    Ferland-McCollough D, Slater S, Richard J et al (2017) Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 171:30–42PubMedCrossRefGoogle Scholar
  113. 113.
    Huntsman HD, Zachwieja N, Zou K et al (2013) Mesenchymal stem cells contribute to vascular growth in skeletal muscle in response to eccentric exercise. Am J Physiol Heart Circ Physiol 304(1):H72–H81PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ivan Varga
    • 1
  • Jan Kyselovič
    • 2
  • Paulina Galfiova
    • 1
  • Lubos Danisovic
    • 3
  1. 1.Institute of Histology and Embryology, Faculty of MedicineComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyComenius University BratislavaBratislavaSlovak Republic
  3. 3.Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of MedicineComenius UniversityBratislavaSlovak Republic

Personalised recommendations