Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise

  • A. Krzesiak
  • N. Delpech
  • S. Sebille
  • C. Cognard
  • A. Chatelier
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 999)

Abstract

Cardiac beneficial effects of chronic exercise is well admitted. These effects mainly studied at the organ and organism integrated levels find their origin in cardiomyocyte adaptation. This chapter try to highlight the main trends of the data related to the different parameters subject to such adaptations. This is addressed through cardiomyocytes size and structure, calcium and contractile properties, and finally electrophysiological alterations induced by training as they transpire from the literature. Despite the clarifications needed to decipher healthy cardiomyocyte remodeling, this overview clearly show that cardiac cell plasticity ensure the cardiac adaptation to exercise training and offers an interesting mean of action to counteract physiological disturbances induced by cardiac pathologies.

Keywords

Structure Contractile Electrophysiological adaptation Cardiomyocytes Exercise 

References

  1. 1.
    Natali AJ, Turner DL, Harrison SM et al (2001) Regional effects of voluntary exercise on cell size and contraction-frequency responses in rat cardiac myocytes. J Exp Biol 204(Pt 6):1191PubMedGoogle Scholar
  2. 2.
    Antzelevitch C, Sicouri S, Litovsky SH et al (1991) Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res 69(6):1427–1449PubMedCrossRefGoogle Scholar
  3. 3.
    Cazorla O, Le Guennec JY, White E (2000) Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J Mol Cell Cardiol 32(5):735–744PubMedCrossRefGoogle Scholar
  4. 4.
    Palmer BM, Thayer AM, Snyder SM et al (1998) Shortening and [Ca2+] dynamics of left ventricular myocytes isolated from exercise-trained rats. J Appl Physiol 85(6):2159–2168PubMedGoogle Scholar
  5. 5.
    Mokelke EA, Palmer BM, Cheung JY et al (1997) Endurance training does not affect intrinsic calcium current characteristics in rat myocardium. Am J Phys 273(3 Pt 2):H1193–H1197Google Scholar
  6. 6.
    Carneiro-Junior MA, Primola-Gomes TN, Quintao-Junior JF et al (2013) Regional effects of low-intensity endurance training on structural and mechanical properties of rat ventricular myocytes. J Appl Physiol 115(1):107–115PubMedCrossRefGoogle Scholar
  7. 7.
    Kemi OJ, Haram PM, Wisloff U et al (2004) Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 109(23):2897–2904PubMedCrossRefGoogle Scholar
  8. 8.
    Natali AJ, Wilson LA, Peckham M et al (2002) Different regional effects of voluntary exercise on the mechanical and electrical properties of rat ventricular myocytes. J Physiol 541(Pt 3):863–875PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Guski H, Meerson FZ, Wassilew G (1981) Comparative study of ultrastructure and function of the rat heart hypertrophied by exercise or hypoxia. Exp Pathol 20(2):108–120PubMedCrossRefGoogle Scholar
  10. 10.
    Wisloff U, Loennechen JP, Falck G et al (2001) Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res 50(3):495–508PubMedCrossRefGoogle Scholar
  11. 11.
    Eisele JC, Schaefer IM, Randel Nyengaard J et al (2008) Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle. Basic Res Cardiol 103(1):12–21PubMedCrossRefGoogle Scholar
  12. 12.
    Nie J, George K, Duan F et al (2016) Histological evidence for reversible cardiomyocyte changes and serum cardiac troponin T elevation after exercise in rats. Physiological reports 4(24):e13083PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Moore RL, Musch TI, Yelamarty RV et al (1993) Chronic exercise alters contractility and morphology of isolated rat cardiac myocytes. Am J Phys 264(5 Pt 1):C1180–C1189Google Scholar
  14. 14.
    Kemi OJ, Hoydal MA, Macquaide N et al (2011) The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts. J Cell Physiol 226(9):2235–2243PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kemi OJ, Haram PM, Loennechen JP et al (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67(1):161–172PubMedCrossRefGoogle Scholar
  16. 16.
    Tanasescu M, Leitzmann MF, Rimm EB et al (2002) Exercise type and intensity in relation to coronary heart disease in men. JAMA 288(16):1994–2000PubMedCrossRefGoogle Scholar
  17. 17.
    Wang S, Ma JZ, Zhu SS et al (2008) Swimming training can affect intrinsic calcium current characteristics in rat myocardium. Eur J Appl Physiol 104(3):549–555PubMedCrossRefGoogle Scholar
  18. 18.
    Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92(11):1182–1192PubMedCrossRefGoogle Scholar
  19. 19.
    Rupp H (1981) The adaptive changes in the isoenzyme pattern of myosin from hypertrophied rat myocardium as a result of pressure overload and physical training. Basic Res Cardiol 76(1):79–88PubMedCrossRefGoogle Scholar
  20. 20.
    Pagani ED, Solaro RJ (1983) Swimming exercise, thyroid state, and the distribution of myosin isoenzymes in rat heart. Am J Phys 245(5 Pt 1):H713–H720Google Scholar
  21. 21.
    Rocha LA, Petriz BA, Borges DH et al (2012) High molecular mass proteomics analyses of left ventricle from rats subjected to differential swimming training. BMC Physiol 12:11PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jin H, Yang R, Li W et al (2000) Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol 279(6):H2994–H3002PubMedGoogle Scholar
  23. 23.
    Rafalski K, Abdourahman A, Edwards JG (2007) Early adaptations to training: upregulation of alpha-myosin heavy chain gene expression. Med Sci Sports Exerc 39(1):75–82PubMedCrossRefGoogle Scholar
  24. 24.
    Tibbits GF, Barnard RJ, Baldwin KM et al (1981) Influence of exercise on excitation-contraction coupling in rat myocardium. Am J Phys 240(4):H472–H480Google Scholar
  25. 25.
    Diffee GM, Chung E (2003) Altered single cell force-velocity and power properties in exercise-trained rat myocardium. J Appl Physiol 94(5):1941–1948PubMedCrossRefGoogle Scholar
  26. 26.
    Tanno AP, das Neves VJ, Rosa KT et al (2011) Nandrolone and resistance training induce heart remodeling: role of fetal genes and implications for cardiac pathophysiology. Life Sci 89(17–18):631–637PubMedCrossRefGoogle Scholar
  27. 27.
    Cazorla O, Ait Mou Y, Goret L et al (2006) Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte. Cardiovasc Res 71(4):652–660PubMedCrossRefGoogle Scholar
  28. 28.
    Soci UP, Fernandes T, Hashimoto NY et al (2011) MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43(11):665–673PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Diffee GM, Seversen EA, Stein TD et al (2003) Microarray expression analysis of effects of exercise training: increase in atrial MLC-1 in rat ventricles. Am J Physiol Heart Circ Physiol 284(3):H830–H837PubMedCrossRefGoogle Scholar
  30. 30.
    Diffee GM, Nagle DF (2003) Regional differences in effects of exercise training on contractile and biochemical properties of rat cardiac myocytes. J Appl Physiol 95(1):35–42PubMedCrossRefGoogle Scholar
  31. 31.
    van der Linden N, Klinkenberg LJ, Leenders M et al (2015) The effect of exercise training on the course of cardiac troponin T and I levels: three independent training studies. Sci Rep 5:18320PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Laughlin MH, Schaefer ME, Sturek M (1992) Effect of exercise training on intracellular free Ca2+ transients in ventricular myocytes of rats. J Appl Physiol 73(4):1441–1448PubMedGoogle Scholar
  33. 33.
    Zhang XQ, Song J, Carl LL et al (2002) Effects of sprint training on contractility and [ca(2+)](i) transients in adult rat myocytes. J Appl Physiol 93(4):1310–1317PubMedCrossRefGoogle Scholar
  34. 34.
    Kemi OJ, Ellingsen O, Ceci M et al (2007) Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 43(3):354–361PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kaurstad G, Alves MN, Kemi OJ et al (2012) Chronic CaMKII inhibition blunts the cardiac contractile response to exercise training. Eur J Appl Physiol 2:579–588CrossRefGoogle Scholar
  36. 36.
    Carneiro-Junior MA, Quintao-Junior JF, Drummond LR et al (2013) The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol 57:119–128PubMedCrossRefGoogle Scholar
  37. 37.
    Wisloff U, Loennechen JP, Currie S et al (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54(1):162–174PubMedCrossRefGoogle Scholar
  38. 38.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205PubMedCrossRefGoogle Scholar
  39. 39.
    Vangheluwe P, Sipido KR, Raeymaekers L et al (2006) New perspectives on the role of SERCA2’s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763(11):1216–1228PubMedCrossRefGoogle Scholar
  40. 40.
    Kemi OJ, Ellingsen O, Smith GL et al (2008) Exercise-induced changes in calcium handling in left ventricular cardiomyocytes. Front Biosci 13:356–368PubMedCrossRefGoogle Scholar
  41. 41.
    Tate CA, Helgason T, Hyek MF et al (1996) SERCA2a and mitochondrial cytochrome oxidase expression are increased in hearts of exercise-trained old rats. Am J Phys 271(1 Pt 2):H68–H72Google Scholar
  42. 42.
    Laughlin MH, Hale CC, Novela L et al (1991) Biochemical characterization of exercise-trained porcine myocardium. J Appl Physiol 71(1):229–235PubMedGoogle Scholar
  43. 43.
    Tibbits GF, Kashihara H, O’Reilly K (1989) Na+−Ca2+ exchange in cardiac sarcolemma: modulation of Ca2+ affinity by exercise. Am J Phys 256(3 Pt 1):C638–C643Google Scholar
  44. 44.
    Shao CH, Wehrens XH, Wyatt TA et al (2009) Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J Appl Physiol 106(4):1280–1292PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Carneiro-Junior MA, Quintao-Junior JF, Drummond LR et al (2014) Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Braz J Med Biol Res 47(11):960–965PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 77(3):1528–1539PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545PubMedCrossRefGoogle Scholar
  48. 48.
    Calore C, Zorzi A, Corrado D (2015) Clinical meaning of isolated increase of QRS voltages in hypertrophic cardiomyopathy versus athlete’s heart. J Electrocardiol 48(3):373–379PubMedCrossRefGoogle Scholar
  49. 49.
    Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly. Eur Heart J 36(23):1445–1453PubMedCrossRefGoogle Scholar
  50. 50.
    Badeer HS (1975) Resting bradycardia of exercise training: a concept based on currently available data. Recent Adv Stud Cardiac Struct Metab 10:553–560PubMedGoogle Scholar
  51. 51.
    Moore RL (1998) Cellular adaptations of the heart muscle to exercise training. Ann Med 30(Suppl 1):46–53PubMedGoogle Scholar
  52. 52.
    Bahrainy S, Levy WC, Busey JM et al (2016) Exercise training bradycardia is largely explained by reduced intrinsic heart rate. Int J Cardiol 222:213–216PubMedCrossRefGoogle Scholar
  53. 53.
    D’Souza A, Bucchi A, Johnsen AB et al (2014) Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun 5:3775PubMedPubMedCentralGoogle Scholar
  54. 54.
    DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106(3):434–446PubMedCrossRefGoogle Scholar
  55. 55.
    Bois P, Bescond J, Renaudon B et al (1996) Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118(4):1051–1057PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zingman LV, Zhu Z, Sierra A et al (2011) Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J Mol Cell Cardiol 51(1):72–81PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yang KC, Foeger NC, Marionneau C et al (2010) Homeostatic regulation of electrical excitability in physiological cardiac hypertrophy. J Physiol 588(Pt 24):5015–5032PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Brown DA, Chicco AJ, Jew KN et al (2005) Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol 569(Pt 3):913–924PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jew KN, Olsson MC, Mokelke EA et al (2001) Endurance training alters outward K+ current characteristics in rat cardiocytes. J Appl Physiol 90(4):1327–1333PubMedGoogle Scholar
  60. 60.
    Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305(5930):147–148PubMedCrossRefGoogle Scholar
  61. 61.
    Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev 96(1):177–252PubMedCrossRefGoogle Scholar
  62. 62.
    Zingman LV, Hodgson DM, Bast PH et al (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A 99(20):13278–13283PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Alekseev AE, Reyes S, Yamada S et al (2010) Sarcolemmal ATP-sensitive K(+) channels control energy expenditure determining body weight. Cell Metab 11(1):58–69PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Marionneau C, Brunet S, Flagg TP et al (2008) Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ Res 102(11):1406–1415PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nabauer M, Beuckelmann DJ, Uberfuhr P et al (1996) Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93(1):168–177PubMedCrossRefGoogle Scholar
  66. 66.
    Carneiro-Junior MA, Quintao-Junior JF, Drummond LR et al (2014) Effect of exercise training on ca(2)(+) release units of left ventricular myocytes of spontaneously hypertensive rats. Braz J Med Biol Res 47(11):960–965PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • A. Krzesiak
    • 1
    • 2
  • N. Delpech
    • 2
  • S. Sebille
    • 1
  • C. Cognard
    • 1
  • A. Chatelier
    • 1
  1. 1.Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Lab. Signalisation et Transports Ioniques Membranaires (STIM)ERL CNRS/Université de Poitiers n°7368, Faculté des Sciences Fondamentales et AppliquéesPoitiers Cedex 9France
  2. 2.Laboratoire Mobilité, Vieillissement & Exercice (MOVE) - EA 6314Faculté des Sciences du Sport Bât C6, 8, allée Jean MonnetPoitiers Cedex 9France

Personalised recommendations