Advertisement

Geo-enabled e-Democracy Tools and Services for Smart Cities

  • Pramod Kumar
  • Kshama Gupta
  • Harish Chandra Karnatak
  • Asfa Siddiqui
  • A. Senthil Kumar
Chapter
Part of the Advances in 21st Century Human Settlements book series (ACHS)

Abstract

In the recent past, an overwhelming growth in geo-enabled open source data and tools through web services and data repositories is witnessed. Internet technology has significantly enhanced the utility of geo-enabled data and applications by making them more accessible to a wider range of users, planners and decision makers through geoportals, mobile Apps and Cloud GIS. The Cloud Computing Architecture (CCA), Internet of Things (IoT) and Service Oriented Architecture (SOA) represent new technological development which allow them to send and receive data without requiring user interaction and enhance interoperability in data and information services. The geospatial information available through geoportals and online data repositories have immense scope for its utilisation in smart city planning with many success stories world over. Geo-enabled data and tools can go a long way in creating a range of smart city applications where citizen participation is one of the key objectives. These tools and services have immense application potential for public participation, grievance management and to address many more aspects of e-democracy and e-governance such as Tourism GIS, Municipal GIS and so on. These citizen-centric Apps and web services facilitate faster information dissemination and improve the efficiency and management of infrastructure, which is essential to enhance the quality of life of urban dwellers and one of the key objectives of the smart city movement. In India, the “Bhuvan” geoportal developed by the Indian Space Research Organisation (ISRO) provides a milieu of data sets which can be used for building smart city applications. Bhuvan portal hosts high-resolution data (~1 m resolution) of more than 350 Indian cities till date and planning to cover other cities in near future. It also offers thematic maps useful for Master Plan formulation for 152 towns prepared under National Urban Information System (NUIS). Effort is on to use high-resolution satellite images for the overlay and fine-tuning of Urban Framework Survey. It also hosts many other data sets, e.g., land use/land cover, road network, soil, geomorphology, etc. which can be used to plan and manage the smart cities effectively.

Keywords

Geospatial Geoportals Mobile apps Bhuvan Smart cities 

References

  1. 1.
    UN (2014) World urbanisation prospects, Department of Economic and Social Affairs, United Nations, https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf. Last accessed in Nov 2016
  2. 2.
    Mckinsey (2010) India’s urbanisation: a closer look. http://www.mckinsey.com/global-themes/urbanisation/indias-urbanisation-a-closer-look. Last accessed in November 2016
  3. 3.
    Steudler D, Rajabifard A (2012) Spatially enabled society, the International Federation of Surveyors (FIG) and the Global Spatial Data Infrastructure Association (GSDI)Google Scholar
  4. 4.
    Nagy M, Legat R, Hřebíček J (2007) Electronic access to environmental information—an important fundament for eDemocracy and environmental protectionGoogle Scholar
  5. 5.
    Anon (2016) India Smart City mission. http://smartcities.gov.in/writereaddata/winningcity/BHUBANESWAR_SCP.pdf. Last accessed in Nov 2016
  6. 6.
    Hai J, Ibrahim C (2007) Fundamental of development administration. Scholar press, Selangor. ISBN 978-967-5-04508-0, 2008, pp. 125–130Google Scholar
  7. 7.
    Gupta K, Roy A, Luthra K, Maithani S, Mahavir (2016) GIS based analysis for assessing the accessibility at hierarchical levels of urban green spaces. Urban Forestry and Urban Greening 18:198–211Google Scholar
  8. 8.
    Mahavir, Bedi P (2014) GIS for smart urbanisation. In: Vinod Kumar TM (ed) Geographic information system for smart cities. Copal publishing, DelhiGoogle Scholar
  9. 9.
    Jat MK, Garg PK, Khare D (2008) Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf 10(1):26–43Google Scholar
  10. 10.
    Gupta K (2013) Unprecedented growth of Dehradun Urban area: a spatio-temporal analysis. Int J Adv Remote Sens GIS Geogr 1(2):6–15Google Scholar
  11. 11.
    Bodhankar S, Gupta K, Kumar P (2015) Smart planning through geo-enabling of digital database for planning authorities: a case study of regional park zone (RPZ) pockets in Navi Mumbai notified area. In: ISG 2015 Conference at Jaipur, 16–18 Dec 2015Google Scholar
  12. 12.
    Gupta K, Kumar P, Pathan SK, Sharma KP (2012) Urban neighborhood green index—a measure of green spaces in urban areas. Landsc Urban Plann 105(3):325–335Google Scholar
  13. 13.
    Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Upper Saddle River, NJ, USA, Pearson Prentice HallGoogle Scholar
  14. 14.
    Bhaskaran S, Paramananda S, Ramnarayan M (2010) Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl Geogr 30:650–665CrossRefGoogle Scholar
  15. 15.
    Jeffery C (2010) An introduction to GNSS, Novatel Inc., Canada. http://www.borealisprecision.com/pdf/An_Introduction_to_GNSS.pdf. Last accessed in Nov 2016
  16. 16.
    Rashid SM (1996) Economics of remote sensing. Manak Publications Pvt. Ltd. https://books.google.co.in/books?id=kpRNAQAAIAAJ
  17. 17.
    Steiniger S, Bocher E (2009) An overview on current free and open source desktop GIS developments. Int J Geogr Inf Sci 23(10):1345–1370Google Scholar
  18. 18.
    Peng ZR, Tsou MH (2003) Internet GIS: distributed geographic information services for the internet and wireless networks. ISBN: 0-471-35923-8, Mar 2003Google Scholar
  19. 19.
    Karnatak HC, Shukla R, Sharma VK, Murthy YVS, Bhanumurthy V (2012) Spatial mashup technology and real time data integration in geo-web application using open source GIS—a case study for disaster management. Geocarto Int 27(6):499–514CrossRefGoogle Scholar
  20. 20.
    Karnatak HC, Saran S, Bhatia K, Roy PS (2007) Multicriteria spatial decision analysis in web GIS environment. Geoinformatica 11(4):407–429CrossRefGoogle Scholar
  21. 21.
    Karnatak HC, Bhatia K, Saran S (2008) Multi-criteria decision analysis using spatial compromise programming. In: Proceedings of the 2nd national conference—INDIACom-2008, on computing for nation development, New Delhi, India. ISBN No-ISSN 0973-7529, ISBN 978-81-904526-2-5, pp 77–62, 08–09 Feb 2008Google Scholar
  22. 22.
    Karnatak HC, Saran S, Roy PS (2005) Spatial services, a click away. Geospatial Today 5:42–46 (2005)Google Scholar
  23. 23.
    Sayar A, Aktas M, Aydin G, Pierce M, Fox G (2005) Developing a web service-compatible map server for geophysical applications technical report. Indiana University, IndianaGoogle Scholar
  24. 24.
    ESRI (2004) Best practices: mobile GIS. http://www.esri.com/library/bestpractices/mobile-gis.pdf
  25. 25.
    Bhuvan User Hand Book (2015) National Remote Sensing Centre, Indian Space Research Organisation, HyderabadGoogle Scholar
  26. 26.
    Ganapati S (2010) Using geographic information systems to increase citizen engagement. IBM Center for The Business of Government, Washington, DC, http://www.businessofgovernment.org/, Last Accessed in November 2016
  27. 27.
    Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69:211. doi: 10.1007/s10708-007-9111-y CrossRefGoogle Scholar
  28. 28.
    Dunn CE (2007) Participatory GIS—a people’s GIS? Prog Hum Geogr 31(5):616–637CrossRefGoogle Scholar

URLs

  1. 29.
  2. 30.
  3. 31.
  4. 32.
  5. 33.
  6. 34.
  7. 35.
  8. 36.
  9. 37.
  10. 38.
  11. 39.
  12. 40.
  13. 41.
  14. 42.
  15. 43.
  16. 44.
  17. 45.
  18. 46.
  19. 47.
  20. 48.
  21. 49.
  22. 50.
  23. 51.
  24. 52.
  25. 53.
  26. 54.
  27. 55.
  28. 56.
  29. 57.
  30. 58.
  31. 59.
  32. 60.
  33. 61.
  34. 62.
  35. 63.
  36. 64.
  37. 65.
  38. 66.
  39. 67.
  40. 68.
  41. 69.
  42. 70.
  43. 71.
  44. 72.
  45. 73.
  46. 74.
  47. 75.
  48. 76.
  49. 77.
  50. 78.
  51. 79.
  52. 80.
  53. 81.
  54. 82.
  55. 83.
  56. 84.
  57. 85.
  58. 86.
  59. 87.
  60. 88.
  61. 89.
  62. 90.
  63. 91.
  64. 92.
  65. 93.
  66. 94.
  67. 95.
  68. 96.
  69. 97.
  70. 98.
  71. 99.
  72. 100.
  73. 101.
    http://www.docs_wri.org/page_forest_gh_sc_final.zip
  74. 102.
  75. 103.
  76. 104.
  77. 105.
  78. 106.
  79. 107.
  80. 108.
  81. 109.
  82. 110.
  83. 111.
  84. 112.
  85. 113.
  86. 114.
  87. 115.
  88. 116.
  89. 117.
  90. 118.
  91. 119.
  92. 120.
  93. 121.
  94. 122.
  95. 123.
  96. 124.
  97. 125.
  98. 126.
  99. 127.
  100. 128.
  101. 129.
  102. 130.
  103. 131.
  104. 132.
  105. 133.
  106. 134.
  107. 135.
  108. 136.
  109. 137.
  110. 138.
  111. 139.
  112. 140.
  113. 141.
  114. 142.
  115. 143.
  116. 144.
  117. 145.
  118. 146.
  119. 147.
  120. 148.
  121. 149.
  122. 150.
  123. 151.
  124. 152.
  125. 153.
  126. 154.
  127. 155.
  128. 156.
  129. 157.
  130. 158.
  131. 159.
  132. 160.
  133. 161.
  134. 162.
  135. 163.
  136. 164.
  137. 165.
  138. 166.
  139. 167.
  140. 168.
  141. 169.
  142. 170.
  143. 171.
  144. 172.
  145. 173.

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Pramod Kumar
    • 1
  • Kshama Gupta
    • 1
  • Harish Chandra Karnatak
    • 1
  • Asfa Siddiqui
    • 1
  • A. Senthil Kumar
    • 1
  1. 1.Indian Institute of Remote SensingDehradunIndia

Personalised recommendations