Immune Checkpoint Blockade and Gastric Cancer

  • Shu Su
  • Baorui Liu


The term “checkpoints” refers to a broad spectrum of either co-receptors or ligands that are widely expressed by immune cells. Importantly, such checkpoints regulate immune cells’ activation. The “inhibitory checkpoints” represent those molecules that play an important role in preventing over-activation of the immune system and are important to maintaining self-tolerance. In this way, immune attack by the host immune system can be prevented. Conversely and in the context of the tumor-immune environment, co-inhibitory receptors may pose a threat to the host’s health by preventing an immune response against these malignancies. Both co-inhibitory receptors and ligands are highly expressed in a large number of malignancies. This high expression allows for successful evasion of antitumor immune responses. One of the most promising tumor immunotherapy strategies is to interrupt these immune “brakes” by blocking antibodies that prevent interactions between receptors and their cognate ligands. As shown by recent clinical trials targeting either the PD-1/PD-L1 or CTLA-4, pathways has yielded exciting results. However, there remains very limited study and understanding on gastric cancer when compared to other malignancies such as melanoma or lung cancer.


Gastric Cancer Gastric Cancer Patient Gastric Cancer Tissue Immune Checkpoint Immune Inhibitory Checkpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wong RM, Scotland RR, Lau RL, Wang C, Korman AJ, Kast WM, et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol. 2007;19(10):1223–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011;71(16):5393–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMedGoogle Scholar
  6. 6.
    Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O’Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 2008;181(10):6738–46.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18(24):6580–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma induced upregulation of B7-H1 (CD274). FEBS Lett. 2006;580(3):755–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C, et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol. 2006;45(4):520–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Youngnak P, Kozono Y, Kozono H, Iwai H, Otsuki N, Jin H, et al. Differential binding properties of B7-H1 and B7-DC to programmed death-1. Biochem Biophys Res Commun. 2003;307(3):672–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 2008;111(7):3635–43.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Bartucci M, Ferrari AC, Kim IY, Ploss A, Yarmush M, Sabaawy HE. Personalized medicine approaches in prostate cancer employing patient derived 3D organoids and humanized mice. Front Cell Dev Biol. 2016;4:64.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Blake SJ, Smyth MJ, Teng MW. Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunol. 2014;3(8):e22.CrossRefGoogle Scholar
  22. 22.
    Lote H, Cafferkey C, Chau I. PD-1 and PD-L1 blockade in gastrointestinal malignancies. Cancer Treat Rev. 2015;41(10):893–903.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006;108(1):19–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Hou J, Yu Z, Xiang R, Li C, Wang L, Chen S, et al. Correlation between infiltration of FOXP3+ regulatory T cells and expression of B7-H1 in the tumor tissues of gastric cancer. Exp Mol Pathol. 2014;96(3):284–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JW, Nam KH, Ahn SH, Park do J, Kim HH, Kim SH, et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer. 2016;19(1):42–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang L, Qiu M, Jin Y, Ji J, Li B, Wang X, et al. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinic pathologic factors. Int J Clin Exp Pathol. 2015;8(9):11084–91.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Thompson ED, Zahurak M, Murphy A, Cornish T, Cuka N, Abdelfatah E, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut. 2016; doi: 10.1136/gutjnl-2015-310839.PubMedCentralGoogle Scholar
  28. 28.
    Böger C, Behrens HM, Mathiak M, Krüger S, Kalthoff H, Röcken C. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016;7(17):24269–83.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Zheng Z, Bu Z, Liu X, Zhang L, Li Z, Wu A, et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chung-kuo yen cheng yen chiu (Chin J Cancer Res). 2014;26(1):104–11.Google Scholar
  30. 30.
    Savabkar S, Azimzadeh P, Chaleshi V, Nazemalhosseini Mojarad E, Aghdaei HA. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with gastric cancer. Gastroenterol Hepatol Bed Bench. 2013;6(4):178–82.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang W, Li F, Mao Y, Zhou H, Sun J, Li R, et al. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet. 2013;132(6):641–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Saito H, Kuroda H, Matsunaga T, Osaki T, Ikeguchi M. Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. 2013;107(5):517–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Takaya S, Saito H, Ikeguchi M. Upregulation of Immune Checkpoint Molecules, PD-1 and LAG-3, on CD4+ and CD8+ T Cells after Gastric Cancer Surgery. Yonago Acta Med. 2015;58(1):39–44.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Takano S, Saito H, Ikeguchi M. An increased number of PD-1+ and Tim-3+ CD8+ T cells is involved in immune evasion in gastric cancer. Surg Today. 2016;46(11):1341–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Eto S, Yoshikawa K, Nishi M, Higashijima J, Tokunaga T, Nakao T, et al. Programmed cell death protein 1 expression is an independent prognostic factor in gastric cancer after curative resection. Gastric Cancer. 2016;19(2):466–71.CrossRefPubMedGoogle Scholar
  36. 36.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRefGoogle Scholar
  37. 37.
    Iizasa H, Nanbo A, Nishikawa J, Jinushi M, Yoshiyama H. Epstein-Barr virus (EBV)-associated gastric carcinoma. Viruses. 2012;4(12):3420–39.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kim SY, Park C, Kim HJ, Park J, Hwang J, Kim JI, et al. Deregulation of immune response genes in patients with Epstein-Barr virus-associated gastric cancer and outcomes. Gastroenterology. 2015;148(1):137–47.CrossRefPubMedGoogle Scholar
  39. 39.
    Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol. 2015;46(4):1421–34.PubMedGoogle Scholar
  40. 40.
    Gulley ML. Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med. 2015;47:e134.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143–58.CrossRefPubMedGoogle Scholar
  42. 42.
    Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 2015;5(1):16–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Muro K, Bang Y, Shankaran V, Geva R, Catenacci D, Gupta S, et al. LBA15A phase1B study of pembrolizumab (Pembro; MK-3475) in patients (Pts) with advanced gastric cancer. Ann Oncol. 2014;25(Suppl 4):v1–4.Google Scholar
  44. 44.
    Muro K, Bang YJ, Shankaran V, Geva R, Catenacci DVT, Gupta S, et al. Relationship between PD-L1 expression and clinical outcomes in patients (Pts) with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (Pembro; MK-3475) in KEYNOTE-012. Presented at the ASCO 2015 gastrointestinal cancers symposium. 2015.Google Scholar
  45. 45.
    Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature. 1987;328(6127):267–70.CrossRefPubMedGoogle Scholar
  46. 46.
    Insley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4(6):535–43.CrossRefGoogle Scholar
  47. 47.
    Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity. 2004;21(3):401–13.CrossRefPubMedGoogle Scholar
  48. 48.
    van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185(3):393–403.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mandelbrot DA, Oosterwegel MA, Shimizu K, Yamada A, Freeman GJ, Mitchell RN, et al. B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J Clin Invest. 2001;107(7):881–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272(5265):1170–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282(5397):2263–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313(5795):1972–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Raufi AG, Klempner SJ. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol. 2015;6(5):561–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol. 2014;27:89–97.CrossRefPubMedGoogle Scholar
  56. 56.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014;588(2):368–76.CrossRefPubMedGoogle Scholar
  58. 58.
    Abdel-Rahman O. Immune checkpoints aberrations and gastric cancer; assessment of prognostic value and evaluation of therapeutic potentials. Crit Rev Oncol Hematol. 2016;97:65–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Kordi-Tamandani DM, Davani SK, Baranzehi T, Hemati S. Analysis of promoter methylation, polymorphism and expression profile of cytotoxic T-lymphocyte-associated antigen-4 in patients with gastric cancer. J Gastrointestin Liver Dis. 2014;23(3):249–53.PubMedGoogle Scholar
  60. 60.
    Lin SJ, Gagnon-Bartsch JA, Tan IB, Earle S, Ruff L, Pettinger K, et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64(11):1721–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Hou R, Cao B, Chen Z, Li Y, Ning T, Li C, et al. Association of Cytotoxic T Lymphocyte-associated antigen-4 gene haplotype with the susceptibility to gastric cancer. Mol Biol Rep. 2010;37(1):515–20.CrossRefPubMedGoogle Scholar
  62. 62.
    Ralph C, Elkord E, Burt DJ, O’Dwyer JF, Austin EB, Stern PL, et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res. 2010;16(5):1662–72.CrossRefPubMedGoogle Scholar
  63. 63.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536–41.CrossRefPubMedGoogle Scholar
  65. 65.
    Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol. 2011;32(8):345–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71(10):3540–51.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Co-expression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117(17):4501–10.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res. 2014;2(5):393–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Jiang J, Jin MS, Kong F, Cao D, Ma HX, Jia Z, et al. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS One. 2013;8(12):e81799.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yang J, Zhu L, Cai Y, Suo J, Jin J. Role of downregulation of galectin-9 in the tumorigenesis of gastric cancer. Int J Oncol. 2014;45(3):1313–20.PubMedGoogle Scholar
  71. 71.
    Cheng G, Li M, Wu J, Ji M, Fang C, Shi H, et al. Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis. Int J Clin Exp Pathol. 2015;8(8):9452–7.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Wang Z, Zhu J, Gu H, Yuan Y, Zhang B, Zhu D, et al. The clinical significance of abnormal Tim-3 expression on NK cells from patients with gastric cancer. Immunol Invest. 2015;44(6):578–89.CrossRefPubMedGoogle Scholar
  73. 73.
    Xia R, Wang F, Gao T, Wen W, Lu B, Zhu Y, et al. The number of myeloid derived suppressor cells in the peripheral blood and tumor tissues in patients with gastric cancer and its clinical significance. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014;30(7):740–3.PubMedGoogle Scholar
  74. 74.
    Cao B, Zhu L, Zhu S, Li D, Zhang C, Xu C, et al. Genetic variations and haplotypes in TIM-3 gene and the risk of gastric cancer. Cancer Immunol Immunother. 2010;59(12):1851–7.CrossRefPubMedGoogle Scholar
  75. 75.
    van Baren N, Van den Eynde BJ. Tumoral immune resistance mediated by enzymes that degrade tryptophan. Cancer Immunol Res. 2015;3(9):978–85.CrossRefPubMedGoogle Scholar
  76. 76.
    Li R, Wei F, Yu J, Li H, Ren X, Hao X. IDO inhibits T-cell function through suppressing Vav1 expression and activation. Cancer Biol Ther. 2009;8(14):1402–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunother. 2006;176(11):6752–61.Google Scholar
  78. 78.
    Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yu J, Sun J, Wang SE, Li H, Cao S, Cong Y, et al. Upregulated expression of indoleamine 2, 3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis. Clin Dev Immunol. 2011;2011:469135.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Creelan BC, Antonia S, Bepler G, Garrett TJ, Simon GR, Soliman HH. Indoleamine 2,3-dioxygenase activity and clinical outcome following induction chemotherapy and concurrent chemoradiation in stage III non-small cell lung cancer. Oncoimmunology. 2013;2(3):e23428.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12(4):1144–51.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang R, Liu H, Li F, Li H, Yu J, Ren X. The correlation between the subsets of tumor infiltrating memory T cells and the expression of indoleamine 2,3-dioxygenase in gastric cancer. Dig Dis Sci. 2013;58(12):3494–502.CrossRefPubMedGoogle Scholar
  83. 83.
    Li F, Huang J, Li S, Li H, Yu J, Ren X, et al. The subsets of dendritic cells and memory T cells correspond to indoleamine 2,3-dioxygenase in stomach tumor microenvironment. Tumour Biol. 2014;35(9):8691–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shu Su
    • 1
  • Baorui Liu
    • 1
  1. 1.The Comprehensive Cancer Centre of Drum Tower HospitalMedical School of Nanjing University and Clinical Cancer Institute of Nanjing UniversityNanjingChina

Personalised recommendations