Avian Reproduction pp 91-103 | Cite as
Fertilization 1: Sperm–Egg Interaction
- 4 Citations
- 1.6k Downloads
Abstract
In birds in the reproductive season, an egg is ovulated without cumulus cells from the largest follicle with the highest hierarchy in the ovary. The outermost part of the ovulated eggs is the perivitelline layer, a glycoprotein matrix consisting of a few ZP-glycoproteins. The fertilization starts from sperm penetration of the perivitelline layer predominantly in the germinal disc region, followed by uptake of the sperm into the egg, and goes through by the fusion of sperm male pronucleus with the female pronucleus in the egg. A series of these fertilization steps occurs in the infundibulum of the oviduct within a short period after ovulation. Some pioneering microstructural studies using electron microscopy and supporting biochemical data from later studies indicate that, in avian fertilization, sperm interacts with the perivitelline layer covering the germinal disc, locally degrade and dissolve the matrix of the perivitelline layer, and penetrate it through the hole made proteolytically at the sperm-binding site on the perivitelline layer. Several molecules and structures presumably involved in the sperm–perivitelline interaction have been characterized, especially sperm proteases and their targets in the egg perivitelline layer. On the other hand, no molecules involved in the sperm–egg membrane fusion for the male pronucleus uptake into the egg have yet been identified or characterized and, moreover, no orthologue but one have been annotated so far in the chicken genome for the mouse genes involved in the sperm–egg membrane fusion.
Keywords
Stigma Perivitelline layer Granulosa cell Infundibulum Acrosome reaction Acrosin Germinal disc Membrane fusionReferences
- Bakst MR, Howarth B Jr. Hydrolysis of the hen’s perivitelline layer by cock sperm in vitro. Biol Reprod. 1977;17:370–9.CrossRefPubMedGoogle Scholar
- Bansal P, Chakrabarti K, Gupta SK. Functional activity of human ZP3 primary sperm receptor resides toward its C-terminus. Biol Reprod. 2009;81:7–15.CrossRefPubMedGoogle Scholar
- Bausek N, Waclawek M, Schneider WJ, Wohlrab F. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J Biol Chem. 2000;275:28866–72.CrossRefPubMedGoogle Scholar
- Bausek N, Ruckenbauer HH, Pfeifer S, Schneider WJ, Wohlrab F. Interaction of sperm with purified native chicken ZP1 and ZPC proteins. Biol Reprod. 2004;71:684–90.CrossRefPubMedGoogle Scholar
- Beebe SJ, Leyton L, Burks D, Ishikawa M, Fuerst T, Dean J, Saling P. Recombinant mouse ZP3 inhibits sperm binding and induces the acrosome reaction. Dev Biol. 1992;151:48–54.CrossRefPubMedGoogle Scholar
- Bellairs R, Harkness ML, Harkness RD. The vitelline membrane of the hen’s egg: a chemical and ultrastructural study. J Ultrastruct Res. 1963;8:339–59.CrossRefGoogle Scholar
- Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–7.CrossRefPubMedPubMedCentralGoogle Scholar
- Birkhead TR, Sheldon BC, Fletcher F. A comparative study of sperm–egg interactions in birds. J Reprod Fertil. 1994;101:353–61.CrossRefPubMedGoogle Scholar
- Bleil JD, Wassarman PM. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev Biol. 1980;76:185–202.CrossRefPubMedGoogle Scholar
- Bleil JD, Wassarman PM. Sperm–egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol. 1983;95:317–24.CrossRefPubMedGoogle Scholar
- Bleil JD, Greve JM, Wassarman PM. Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol. 1988;128:376–85.CrossRefPubMedGoogle Scholar
- Bramwell RK, Howarth B Jr. Preferential attachment of cock spermatozoa to the perivitelline layer directly over the germinal disc of the hen’s egg. Biol Reprod. 1992;47:1113–7.CrossRefPubMedGoogle Scholar
- Bramwell RK, Marks HL, Howarth B. Quantitative determination of spermatozoa penetration of the perivitelline layer of the hen’s egg as assessed on oviposited eggs. Poult Sci. 1995;74:1875–83.CrossRefPubMedGoogle Scholar
- Brown CR, Cheng WT. Limited proteolysis of the porcine zona pellucida by homologous sperm acrosin. J Reprod Fertil. 1985;74:257–60.CrossRefPubMedGoogle Scholar
- Buruiana LM. Sur l’activité hyaluronidasique et trypsinique du sperme. Naturwissenschaften. 1956;43:523.CrossRefGoogle Scholar
- Chakravarty S, Suraj K, Gupta SK. Baculovirus-expressed recombinant human zona pellucida glycoprotein-B induces acrosomal exocytosis in capacitated spermatozoa in addition to zona pellucida glycoprotein-C. Mol Hum Reprod. 2005;11:365–72.CrossRefPubMedGoogle Scholar
- Chakravarty S, Kadunganattil S, Bansal P, Sharma RK, Gupta SK. Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis. Mol Reprod Dev. 2008;75:75–88.CrossRefPubMedGoogle Scholar
- Dunbar BS, Dudkiewicz AB, Bundman DS. Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin. Biol Reprod. 1985;32:619–30.CrossRefPubMedGoogle Scholar
- Fronda FM. Studies on the fertility of the hen’s egg. Philippine Agr. 1926;15:349–60.Google Scholar
- Ganguly A, Bukovsky A, Sharma RK, Bansal P, Bhandari B, Gupta SK. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod. 2010;25:1643–56.CrossRefPubMedGoogle Scholar
- Gilbert AB. Female genital organs. In: King AS, McLelland J, editors. Form and function in birds, vol. 1. London: Academic Press; 1979.Google Scholar
- Grayson P. Izumo1 and Juno: the evolutionary origins and coevolution of essential sperm–egg binding partners. R Soc Open Sci. 2015;2:150296.CrossRefPubMedPubMedCentralGoogle Scholar
- Han L, Monné M, Okumura H, Schwend T, Cherry AL, Flot D, Matsuda T, Jovine L. Insights into egg coat assembly and egg–sperm interaction from the X-ray structure of full-length ZP3. Cell. 2010;143:404–15.CrossRefPubMedGoogle Scholar
- Ho JJ, Meizel S. Electrophoretic detection of multiple forms of trypsin-like activity in spermatozoa of the domestic fowl. J Reprod Fertil. 1970;23:177–9.CrossRefPubMedGoogle Scholar
- Ho JJ, Meizel S. Hydrolysis of the hen egg vitelline membrane by cock sperm acrosin and other enzymes. J Exp Zool. 1975;194:429–37.CrossRefPubMedGoogle Scholar
- Horrocks AJ, Stewart S, Jackson L, Wishart GJ. Induction of acrosomal exocytosis in chicken spermatozoa by inner perivitelline-derived N-linked glycans. Biochem Biophys Res Commun. 2000;278:84–9.CrossRefPubMedGoogle Scholar
- Howarth B. Avian sperm–egg interaction: perivitelline layer possesses receptor activity for spermatozoa. Poult Sci. 1990;69:1012–5.CrossRefPubMedGoogle Scholar
- Howarth B. Carbohydrate involvement in sperm–egg interaction in the chicken. J Recept Res. 1992;12:255–65.CrossRefPubMedGoogle Scholar
- Howarth B Jr, Digby ST. Evidence for the penetration of the vitelline membrane of the hen’s egg by a trypsin-like acrosomal enzyme. J Reprod Fertil. 1973;33:123–5.CrossRefPubMedGoogle Scholar
- Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–8.CrossRefPubMedGoogle Scholar
- Ivanoff EJ. Compt Rend Soc Biol. 1913;75:371–4.Google Scholar
- Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A. 2011;108:4892–6.CrossRefPubMedPubMedCentralGoogle Scholar
- Johnson AL. Reproduction in the female. In: Sturkie PD, editor. Avian physiology. 4th ed. New York: Springer-Verlag; 1986. p. 403–31.CrossRefGoogle Scholar
- Koyanagi F, Masuda S, Nishiyama H. Acrosome reaction of cock spermatozoa incubated with the perivitelline layer of the hen’s egg. Poult Sci. 1988;67:1770–4.CrossRefPubMedGoogle Scholar
- Kuroki M, Mori M. Binding of spermatozoa to the perivitelline layer in the presence of a protease inhibitor. Poult Sci. 1997;76:748–52.CrossRefPubMedGoogle Scholar
- La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol. 2016;411:172–82.CrossRefPubMedPubMedCentralGoogle Scholar
- Martin JH, Anderson WB. J Am Assoc Instr Invest Poultry Husbandry. 1918;5:22–3.Google Scholar
- Mimura H. On the mechanism of travel of spermatozoa through the oviduct in the domestic fowl, with special reference to the artificial insemination. Okajimas Folia Anat Jpn. 1939;17:459–76.CrossRefGoogle Scholar
- Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–4.CrossRefPubMedGoogle Scholar
- Nishio S, Kohno Y, Iwata Y, Arai M, Okumura H, Oshima K, Nadano D, Matsuda T. Glycosylated chicken ZP2 accumulates in the egg coat of immature oocytes and remains localized to the germinal disc region of mature eggs. Biol Reprod. 2014;91:107.CrossRefPubMedGoogle Scholar
- Okamura F, Nishiyama H. The passage of spermatozoa through the vitelline membrane in the domestic fowl, Gallus gallus. Cell Tissue Res. 1978a;188:497–508.CrossRefPubMedGoogle Scholar
- Okamura F, Nishiyama H. Penetration of spermatozoon into the egg and transformation of the sperm nucleus into the male pronucleus in the domestic fowl, Gallus gallus. Cell Tissue Res. 1978b;190:89–98.CrossRefPubMedGoogle Scholar
- Okumura H, Kohno Y, Iwata Y, Mori H, Aoki N, Sato C, Kitajima K, Nadano D, Matsuda T. A newly identified zona pellucida glycoprotein, ZPD, and dimeric ZP1 of chicken egg envelope are involved in sperm activation on sperm–egg interaction. Biochem J. 2004;384:191–9.CrossRefPubMedPubMedCentralGoogle Scholar
- Olsen MW. Maturation, fertilization, and early cleavage in the hen’s egg. J Morphol. 1942;70:513–33.CrossRefGoogle Scholar
- Olsen MW. Intra-ovarian insemination in the domestic fowl. J Exp Zool. 1952;119:461–81.CrossRefGoogle Scholar
- Olsen MW, Fraps RM. Maturation, fertilization, and early cleavage of the egg of the domestic turkey. J Morphol. 1944;74:297–309.CrossRefGoogle Scholar
- Pan J, Sasanami T, Kono Y, Matsuda T, Mori M. Effects of testosterone on production of perivitelline membrane glycoprotein ZPC by granulosa cells of Japanese quail (Coturnix japonica). Biol Reprod. 2001;64:310–6.CrossRefPubMedGoogle Scholar
- Robertson L, Wishart GJ, Horrocks AJ. Identification of perivitelline N-linked glycans as mediators of sperm–egg interaction in chickens. J Reprod Fertil. 2000;120:397–403.PubMedGoogle Scholar
- Romanoff AL. Fertilization and fertility. In:The avian embryo: structural and functional development. New York: Macmillan; 1960.Google Scholar
- Romanoff AL, Romanoff AJ. The avian egg. New York: John Wiley & Sons; 1949.Google Scholar
- Sasanami T, Pan J, Mori M. Expression of perivitelline membrane glycoprotein ZP1 in the liver of Japanese quail (Coturnix japonica) after in vivo treatment with diethylstilbestrol. J Steroid Biochem Mol Biol. 2003;84:109–16.CrossRefPubMedGoogle Scholar
- Sasanami T, Murata T, Ohtsuki M, Matsushima K, Hiyama G, Kansaku N, Mori M. Induction of sperm acrosome reaction by perivitelline membrane glycoprotein ZP1 in Japanese quail (Coturnix japonica). Reproduction. 2007;133:41–9.Google Scholar
- Sasanami T, Yoshizaki N, Dohra H, Kubo H. Sperm acrosin is responsible for the sperm binding to the egg envelope during fertilization in Japanese quail (Coturnix japonica). Reproduction. 2011;142:267–76.CrossRefPubMedGoogle Scholar
- Sasanami T, Sugiura K, Tokumoto T, Yoshizaki N, Dohra H, Nishio S, Mizushima S, Hiyama G, Matsuda T. Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica). Reproduction. 2012;144:423–31.CrossRefPubMedGoogle Scholar
- Słowińska M, Ciereszko A. Identification of the second form of acrosin in Turkey spermatozoa. Reprod Domest Anim. 2012;47:849–55.CrossRefPubMedGoogle Scholar
- Słowińska M, Olczak M, Liszewska E, Watorek W, Ciereszko A. Isolation, characterization and cDNA sequencing of acrosin from turkey spermatozoa. Comp Biochem Physiol B Biochem Mol Biol. 2010;157:127–36.CrossRefPubMedGoogle Scholar
- Stambaugh R, Buckley J. Zona pellucida dissolution enzymes of the rabbit sperm head. Science. 1968;161:585–6.CrossRefPubMedGoogle Scholar
- Steele MG, Meldrum W, Brillard JP, Wishart GJ. The interaction of avian spermatozoa with the perivitelline layer in vitro and in vivo. J Reprod Fertil. 1994;101:599–603.CrossRefPubMedGoogle Scholar
- Stewart SG, Bausek N, Wohlrab F, Schneider WJ, Janet Horrocks A, Wishart GJ. Species specificity in avian sperm: perivitelline interaction. Comp Biochem Physiol A Mol Integr Physiol. 2004;137:657–63.CrossRefPubMedGoogle Scholar
- Takeuchi Y, Nishimura K, Aoki N, Adachi T, Sato C, Kitajima K, Matsuda T. A 42-kDa glycoprotein from chicken egg-envelope, an avian homolog of the ZPC family glycoproteins in mammalian Zona pellucida. Its first identification, cDNA cloning and granulosa cell-specific expression. Eur J Biochem. 1999;260:736–42.CrossRefPubMedGoogle Scholar
- Takeuchi Y, Cho R, Iwata Y, Nishimura K, Kato T, Aoki N, Kitajima K, Matsuda T. Morphological and biochemical changes of isolated chicken egg-envelope during sperm penetration: degradation of the 97-kilodalton glycoprotein is involved in sperm-driven hole formation on the egg-envelope. Biol Reprod. 2001;64:822–30.CrossRefPubMedGoogle Scholar
- Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61:414–24.CrossRefPubMedGoogle Scholar
- Toshimori K, Saxena DK, Tanii I, Yoshinaga K. An MN9 antigenic molecule, equatorin, is required for successful sperm–oocyte fusion in mice. Biol Reprod. 1998;59:22–9.CrossRefPubMedGoogle Scholar
- Urch UA, Wardrip NJ, Hedrick JL. Limited and specific proteolysis of the zona pellucida by acrosin. J Exp Zool. 1985a;233:479–83.CrossRefPubMedGoogle Scholar
- Urch UA, Wardrip NJ, Hedrick JL. Proteolysis of the zona pellucida by acrosin: the nature of the hydrolysis products. J Exp Zool. 1985b;236:239–43.CrossRefPubMedGoogle Scholar
- Waclawek M, Foisner R, Nimpf J, Schneider WJ. The chicken homologue of zona pellucida protein-3 is synthesized by granulosa cells. Biol Reprod. 1998;59:1230–9.CrossRefPubMedGoogle Scholar
- Wishart GJ. Quantitative aspects of sperm: egg interaction in chickens and turkeys. Anim Reprod Sci. 1997;48:81–92.CrossRefPubMedGoogle Scholar