Advertisement

Langevin Simulation of Turbulent Combustion

  • A. G. NouriEmail author
  • S. Sammak
  • P. H. Pisciuneri
  • P. Givi
Chapter

Abstract

A review is presented of modern developments in Langevin simulation of turbulent reacting flows. The filtered density function (FDF) methodology is the subject of main focus as it has proven very effective for stochastic simulations in turbulent combustion. The most recent contributions in mathematical modeling of FDF, its numerical solution, and its optimization for large scale simulations are reviewed.

Keywords

Monte Carlo Large Eddy Simulation Direct Numerical Simulation Discontinuous Galerkin Premix Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is sponsored by AFOSR under Grant FA9550-12-1-0057, and by NSF under Grant CBET-1609120 and Grant CBET-1603131. Computational resources are provided by the University of Pittsburgh Center for Research Computing.

References

  1. 1.
    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D (2013) CFD Vision 2030 study: A path to revolutionary computational aerosciences. Tech. rep., NASA Langley Research Center, Hampton, VA. NASA/CR-2014-218178Google Scholar
  2. 2.
    Einstein A (1956) Investigations on the theory of the brownian movement, 2nd edn. Dover PublicationsGoogle Scholar
  3. 3.
    Monin AS, Yaglom AM (1975) Statistical fluid mechanics, vol. 2. MIT PressGoogle Scholar
  4. 4.
    Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New YorkzbMATHGoogle Scholar
  5. 5.
    Panchev S (1970) Random functions and turbulence. Pergamon Press, Oxford, EnglandzbMATHGoogle Scholar
  6. 6.
    Givi P (1989) Prog Energy Combust 15(1):1. doi: 10.1016/0360-1285(89)90006-3 CrossRefGoogle Scholar
  7. 7.
    Poinsot T, Veynante D (2011) Theoretical and numerical combustion, 3rd edn. R.T.Edwards Inc., PhiladelphiaGoogle Scholar
  8. 8.
    Heinz S (2003) Statistical mechanics of turbulent flows. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  10. 10.
    Lundgren TS (1967) Phys Fluids 10(5):969. doi: 10.1063/1.1762249 CrossRefGoogle Scholar
  11. 11.
    Lundgren TS (1972) Statistical models and turbulence, Rosenblatt M, van Atta C (eds) Lecture Notes in Physics, vol. 12. Springer, pp 70–100. doi: 10.1007/3-540-05716-1_5
  12. 12.
    Fox RO (2003) Computational models for turbulent reacting flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    Pope SB (1990) Proc Combust Inst 23(1):591. doi: 10.1016/S0082-0784(06)80307-3 CrossRefGoogle Scholar
  14. 14.
    Gao F, O’Brien EE (1993) Phys Fluids A 5(6):1282. doi: 10.1063/1.858617 CrossRefGoogle Scholar
  15. 15.
    Madnia CK, Givi P (1993) Large eddy simulation of complex engineering and geophysical flows. In: Galperin B, Orszag SA (eds) Cambridge University Press, Cambridge, England, chap 15, pp 315–346Google Scholar
  16. 16.
    Colucci PJ, Jaberi FA, Givi P, Pope SB (1998) Phys Fluids 10(2):499. doi: 10.1063/1.869537 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jaberi FA, Colucci PJ, James S, Givi P, Pope SB (1999) J Fluid Mech 401:85. doi: 10.1017/S0022112099006643 CrossRefGoogle Scholar
  18. 18.
    Givi P (2006) AIAA J 44(1):16. doi: 10.2514/1.15514 CrossRefGoogle Scholar
  19. 19.
    Haworth DC (2010) Prog Energy Combust 36(2):168. doi: 10.1016/j.pecs.2009.09.003 CrossRefGoogle Scholar
  20. 20.
    Ansari N, Jaberi FA, Sheikhi MRH, Givi P (2011) Engineering applications of computational fluid dynamics. In: Maher ARS (ed), vol 1. International Energy and Environment Foundation, chap. 1, pp 1–22Google Scholar
  21. 21.
    Pope SB (2013) Proc Combust Inst 34(1):1. doi: 10.1016/j.proci.2012.09.009 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Foster JW, Miller RS (2015) 53rd AIAA aerospace sciences meeting. AIAA, Kissimmee, FL, pp 1–21. doi: 10.2514/6.2015-1379, (AIAA-2015-1379)
  23. 23.
    Sagaut P (2010) Large eddy simulation for incompressible flows, 3rd edn. Springer, New YorkzbMATHGoogle Scholar
  24. 24.
    Lesieur M (1990) Turbulence in fluids, fluid mechanics and its applications, 2nd edn. Kluwer Academic Publishers, BostonzbMATHGoogle Scholar
  25. 25.
    Geurts BJ (2004) Elements of direct and large-eddy simulation. R. T. Edwards Inc, PhiladelphiaGoogle Scholar
  26. 26.
    Gikhman II, Skorokhod AV (1972) Stochastic differential equations. Springer, New YorkCrossRefzbMATHGoogle Scholar
  27. 27.
    Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New YorkzbMATHGoogle Scholar
  28. 28.
    Nouri AG, Givi P, Nik MB, Pope SB (2015) Bulletin of the American physical society, 68th annual meeting of the APS division of fluid dynamics, vol. 60. American Physical Society, Boston, MA, p 565Google Scholar
  29. 29.
    Sheikhi MRH, Givi P, Pope SB (2009) Phys Fluids 21(7):075102. doi: 10.1063/1.3153907 CrossRefGoogle Scholar
  30. 30.
    Nik MB, Yilmaz SL, Givi P, Sheikhi MRH, Pope SB (2010) AIAA J 48(7):1513. doi: 10.2514/1.50239 CrossRefGoogle Scholar
  31. 31.
    Sheikhi MRH, Givi P, Pope SB (2007) Phys Fluids 19(9):095106. doi: 10.1063/1.2768953 CrossRefGoogle Scholar
  32. 32.
    Sheikhi MRH, Drozda TG, Givi P, Pope SB (2003) Phys Fluids 15(8):2321. doi: 10.1063/1.1584678 CrossRefGoogle Scholar
  33. 33.
    Gicquel LYM, Givi P, Jaberi FA, Pope SB (2002) Phys Fluids 14(3):1196. doi: 10.1063/1.1436496 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhou XY, Pereira JCF (2000) Flow Turbul Combust 64(4):279. doi: 10.1023/A:1026595626129 CrossRefGoogle Scholar
  35. 35.
    Heinz S (2003) Flow Turbul Combust 70(1–4):115. doi: 10.1023/B:APPL.0000004933.17800.46 CrossRefGoogle Scholar
  36. 36.
    Raman V, Pitsch H, Fox RO (2005) Combust Flame 143(1–2):56. doi: 10.1016/j.combustflame.2005.05.002 CrossRefGoogle Scholar
  37. 37.
    Raman V, Pitsch H (2005) Combust Flame 142(4):329. doi: 10.1016/j.combustflame.2005.03.014 CrossRefGoogle Scholar
  38. 38.
    Van Vliet E, Derksen JJ, van den Akker HEA (2005) AIChE J 51(3):725. doi: 10.1002/aic.10365
  39. 39.
    Carrara MD, DesJardin PE (2006) Int J Multiph Flow 32(3):365. doi: 10.1016/j.ijmultiphaseflow.2005.11.003 CrossRefGoogle Scholar
  40. 40.
    Sammak S, Nouri AG, Ansari N, Givi P (2015) Mathematical modeling of technological processes, Danaev N, Shokin Y, Darkhan AZ. Springer International Publishing, chap. 13, pp 124–132. doi: 10.1007/978-3-319-25058-8_13
  41. 41.
    Mustata R, Valiño L, Jiménez C, Jones W, Bondi S (2006) Combust Flame 145(1–2):88. doi: 10.1016/j.combustflame.2005.12.002
  42. 42.
    Jones WP, Navarro-Martinez S, Röhl O (2007) Proc Combust Inst 31(2):1765. doi: 10.1016/j.proci.2006.07.041 CrossRefGoogle Scholar
  43. 43.
    Drozda TG, Sheikhi MRH, Madnia CK, Givi P (2007) Flow Turbul Combust 78(1):35. doi: 10.1007/s10494-006-9052-4 CrossRefGoogle Scholar
  44. 44.
    Jones WP, Navarro-Martinez S (2007) Combust Flame 150(3):170. doi: 10.1016/j.combustflame.2007.04.003 CrossRefGoogle Scholar
  45. 45.
    James S, Zhu J, Anand MS (2007) Proc Combust Inst 31(2):1737. doi: 10.1016/j.proci.2006.07.160 CrossRefGoogle Scholar
  46. 46.
    McDermott R, Pope SB (2007) J Comput Phys 226(1):947. doi: 10.1016/j.jcp.2007.05.006 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Raman V, Pitsch H (2007) Proc Combust Inst 31(2):1711. doi: 10.1016/j.proci.2006.07.152 CrossRefGoogle Scholar
  48. 48.
    Afshari A, Jaberi F, Shih T (2008) AIAA J 46(7):1576. doi: 10.2514/1.25467 CrossRefGoogle Scholar
  49. 49.
    Drozda TG, Wang G, Sankaran V, Mayo JR, Oefelein JC, Barlow RS (2008) Combust Flame 155(1–2):54. doi: 10.1016/j.combustflame.2008.06.012 CrossRefGoogle Scholar
  50. 50.
    Yilmaz SL, Nik MB, Givi P, Strakey PA (2010) J Propuls Power 26(1):84. doi: 10.2514/1.44600 CrossRefGoogle Scholar
  51. 51.
    Ansari N, Goldin GM, Sheikhi MRH, Givi P (2011) J Comput Phys 230(19):7132. doi: 10.1016/j.jcp.2011.05.015 MathSciNetCrossRefGoogle Scholar
  52. 52.
    Yilmaz SL, Nik MB, Sheikhi MRH, Strakey PA, Givi P (2011) J Sci Comput 47(1):109. doi: 10.1007/s10915-010-9424-8 MathSciNetCrossRefGoogle Scholar
  53. 53.
    Pisciuneri PH, Yilmaz SL, Strakey PA, Givi P (2013) SIAM, J Sci Comput 35(4):C438. doi: 10.1137/130911512
  54. 54.
    Pisciuneri PH, Yilmaz SL, Strakey PA, Givi P (2015) Stochastic equations for complex systems: theoretical and computational topics. In: Heinz S, Bessaih H (eds) Mathematical engineering. Springer International Publishing, chap. 8, pp 175–192. doi: 10.1007/978-3-319-18206-3_8
  55. 55.
    Nik MB, Yilmaz SL, Sheikhi MRH, Givi P (2010) Flow Turbul Combust 85(3–4):677. doi: 10.1007/s10494-010-9272-5 CrossRefGoogle Scholar
  56. 56.
    Ansari N, Pisciuneri PH, Strakey PA, Givi P (2012) AIAA J 50(11):2476. doi: 10.2514/1.J051671 CrossRefGoogle Scholar
  57. 57.
    Banaeizadeh A, Afshari A, Schock H, Jaberi F (2013) Int J Heat Mass Transf 60:781. doi: 10.1016/j.ijheatmasstransfer.2012.12.065 CrossRefGoogle Scholar
  58. 58.
    Ansari N, Strakey PA, Goldin GM, Givi P (2015) Proc Combust Inst 35(2):1433. doi: 10.1016/j.proci.2014.05.042 CrossRefGoogle Scholar
  59. 59.
    Esmaeili M, Afshari A, Jaberi FA (2015) Int J Heat Mass Transf 89:1239. doi: 10.1016/j.ijheatmasstransfer.2015.05.055 CrossRefGoogle Scholar
  60. 60.
    Sammak S, Brazell MJ, Givi P, Mavriplis DJ (2016) Comput Fluids 140:158. doi: 10.1016/j.compfluid.2016.09.003 MathSciNetCrossRefGoogle Scholar
  61. 61.
    Yilmaz SL, Ansari N, Pisciuneri PH, Nik MB, Otis CC, Givi P (2013) J Appl Fluid Mech 6(3):311Google Scholar
  62. 62.
    Kuo KK, Acharya R (2012) Fundamentals of turbulent and multiphase combustion. John Wiley and Sons Inc., HobokenCrossRefGoogle Scholar
  63. 63.
    Almeida T, Afshari A, Jaberi FA (2005) Advances in combustion and noise control, Roy GD, Yu KH, Whitelaw JH, Witton JJ (eds) Cranfield University Press, chap. 35, pp 551–564Google Scholar
  64. 64.
    O’Brien EE (1980) Turbulent reacting flows, Libby P, Williams F (eds) Topics in Applied Physics, vol 44. Springer Berlin, chap. 5, pp 185–218. doi: 10.1007/3540101926_11
  65. 65.
    Pope SB (1985) Prog Energ Combust 11(2):119. doi: 10.1016/0360-1285(85)90002-4 CrossRefGoogle Scholar
  66. 66.
    Vreman B, Geurts B, Kuerten H (1994) J Fluid Mech 278:351. doi: 10.1017/S0022112094003745 CrossRefGoogle Scholar
  67. 67.
    Dopazo C, O’Brien EE (1976) Combust Sci Technol 13(1–6):99. doi: 10.1080/00102207608946731 CrossRefGoogle Scholar
  68. 68.
    Haworth DC, Pope SB (1986) Phys Fluids 29(2):387. doi: 10.1063/1.865723 MathSciNetCrossRefGoogle Scholar
  69. 69.
    Dreeben TD, Pope SB (1997) Phys Fluids 9(1):154. doi: 10.1063/1.869157 CrossRefGoogle Scholar
  70. 70.
    Risken H (1989) The Fokker-Planck equation, methods of solution and applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  71. 71.
    Martin MP, Piomelli U, Candler GV (2000) Theor Comput Fluid Dyn 13(5):361. doi: 10.1007/s001620050005
  72. 72.
    Grigoriu M (1995) Applied non-Gaussian processes. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  73. 73.
    Kloeden PE, Platen E, Schurz H (1997) Numerical solution of stochastic differential equations through computer experiments, 2nd edn. Springer, BerlinzbMATHGoogle Scholar
  74. 74.
    Blaise S, St-Cyr A, Mavriplis D, Lockwood B (2013) J Comput Phys 232(1):416. doi: 10.1016/j.jcp.2012.08.022 MathSciNetCrossRefGoogle Scholar
  75. 75.
    Brazell M, Mavriplis DJ (2013) 21st AIAA CFD conference. AIAA, San Diego, CA. (AIAA-2013-2855)Google Scholar
  76. 76.
    Glasby RS, Burgess NK, Anderson WK, Wang L, Mavrplis DJ, Allmaras SR (2013) 51st AIAA aerospace sciences meeting and exhibit. AIAA, Grapevine, TX. (AIAA-2013-0691)Google Scholar
  77. 77.
    Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee, The opportunities and challenges of exascale computing. Tech. rep., U.S. Department of Energy (2010)Google Scholar
  78. 78.
    Karypis G, Kumar V (1998) METIS: A software package for partitioning unstructured graphs, partitioning meshes and computing fill-reducing orderings of sparse matrices, version 4.0. University of Minnesota, Minneapolis, MNGoogle Scholar
  79. 79.
    Chen YC, Peters N, Schneemann GA, Wruck N, Renz U, Mansour MS (1996) Combust Flame 107(3):223. doi: 10.1016/S0010-2180(96)00070-3 CrossRefGoogle Scholar
  80. 80.
    Meier W, Weigand P, Duan XR, Giezendanner-Thoben R (2007) Combust Flame 150(1–2):2. doi: 10.1016/j.combustflame.2007.04.002 CrossRefGoogle Scholar
  81. 81.
    Valiant LG (1990) Commun ACM 33(8):103. doi: 10.1145/79173.79181 CrossRefGoogle Scholar
  82. 82.
    Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the message-passing interface, 2nd edn., Scientific and Engineering Computation. MIT Press, CambridgeGoogle Scholar
  83. 83.
    Gropp W, Lusk E, Thakur R (1999) Using MPI-2: advanced features of the message-passing interface., Scientific and Engineering Computation. The MIT Press, CambridgeGoogle Scholar
  84. 84.
    The OpenMP API specification for parallel programming (2016). http://www.openmp.org
  85. 85.
    NVIDIA CUDA parallel programming and computing platform (2016). http://www.nvidia.com/object/cuda_home_new.html
  86. 86.
    OpenACC directives for accelerators (2016). http://www.openacc-standard.org
  87. 87.
    Devine KD, Boman EG, Karypis G (2006) Frontiers of scientific computing, Heroux M, Raghavan A, Simon H (eds) SIAM, Philadelphia, PA, chap. 1, pp 1–29Google Scholar
  88. 88.
    Boman E, Devine K, Heaphy R, Hendrickson B, Leung V, Riesen LA, Vaughan C, Catalyurek U, Bozdag D, Mitchell W, Teresco J (2007) Zoltan 3.0: parallel partitioning, load balancing, and data-management services; user’s guide. Tech. Rep. SAND2007-4748W, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  89. 89.
    Kale LV, Bhatele A (2013) Parallel science and engineering applications: the charm++ approach, Series in Computational Physics. CRC Press, chap 1Google Scholar
  90. 90.
    Gassner GJ, Beck AD (2013) Theor Comput Fluid Dyn 27(3):221. doi: 10.1007/s00162-011-0253-7
  91. 91.
    Gullbrand J, Chow FK (2003) J Fluid Mech 495:323. doi: 10.1017/S0022112003006268 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • A. G. Nouri
    • 1
    Email author
  • S. Sammak
    • 1
  • P. H. Pisciuneri
    • 1
  • P. Givi
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations