Advertisement

Development and Bioengineering of Lung Regeneration

  • Andrew Wilson
  • Laertis Ikonomou
Chapter

Abstract

The limited ability of the lung to respond to devastating degenerative disease entities provides the impetus to develop new cell-based restorative therapies. Approaches to meet this need could include either production of stem/progenitor cells for delivery to the damaged native lung to regenerate damaged tissue or engineering of a de novo transplantable organ. In either case, an understanding of normal lung development provides a road map for directing pluripotent stem cells (PSCs) to differentiate to lung epithelium in vitro. Lung epithelium is derived from the endodermal germ layer, which in turn is formed during gastrulation as cells migrate through the primitive streak. Through precisely coordinated temporospatial exposure to key agonists and antagonists of the WNT, FGF, BMP, and RA pathways, a subset of definitive endoderm cells are induced to express Nkx2–1, the earliest known marker of primordial lung progenitor cells, before further differentiation to mature cell types comprising the proximal and distal lung compartments. Novel culture systems, such as decellularized lung scaffolds and in vitro organoids, offer unprecedented opportunities for achieving multilineage differentiation and tissue-like structure formation together with functional evaluation of PSC-derived lung progenitors. Combined with advances in our ability to model lung development in vitro with human PSCs, emerging bioengineering techniques are rapidly transforming the field and are likely both to further our understanding of normal development and to facilitate therapeutic applications of these in the years to come.

Keywords

Development Stem cells Directed differentiation NKX2–1 Decellularization-recellularization Lung scaffolds Organoids 3D bioprinting Bioartificial lung 

Notes

Acknowledgments

Andrew A. Wilson is supported by R01DK101501 and Laertis Ikonomou by grants R01 HL111574 and R01 HL124280.

References

  1. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. In: Yarmush ML, Duncan JS, Gray ML (eds) Annual review of biomedical engineering, vol 13. Annu Rev, Palo Alto, pp 27–53Google Scholar
  2. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036. doi: 10.1172/jci68782 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bilodeau M, Shojaie S, Ackerley C, Post M, Rossant J (2014) Identification of a proximal progenitor population from murine fetal lungs with clonogenic and multilineage differentiation potential. Stem Cell Rep 3(4):634–649. doi: 10.1016/j.stemcr.2014.07.010 CrossRefGoogle Scholar
  4. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular-matrix direct gene-expression. J Theor Biol 99(1):31–68CrossRefPubMedGoogle Scholar
  5. Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA, Tsui JL, Weiss K, Horowitz JC, Fiore VF, Barker TH, Moore BB, Martinez FJ, Niklason LE, White ES (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186(9):866–876. doi: 10.1164/rccm.201204-0754OC CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cardoso WV, Kotton DN (2008) Specification and patterning of the respiratory system stem book. The Stem Cell Research Community. Harvard Stem Cell Institute, Cambridge, MAGoogle Scholar
  7. Cardoso WV, Lu JN (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133(9):1611–1624CrossRefPubMedGoogle Scholar
  8. Chapman HA, Li XP, Alexander JP, Brumwel A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin alpha 6 beta 4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 121(7):2855–2862. doi: 10.1172/jci57673 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen F, Desai TJ, Qian J, Niederreither K, Lu JN, Cardoso WV (2007) Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134(16):2969–2979. doi: 10.1242/dev.006221 CrossRefPubMedGoogle Scholar
  10. Chen F, Cao YX, Qian J, Shao FZ, Niederreither K, Cardoso WV (2010) A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 120(6):2040–2048. doi: 10.1172/jci40253 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen HY, Matsumoto K, Brockway BL, Rackley CR, Liang JR, Lee JH, Jiang DH, Noble PW, Randell SH, Kim CF, Stripp BR (2012) Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells 30(9):1948–1960. doi: 10.1002/stem.1150 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Christodoulou C, Longmire TA, Shen SS, Bourdon A, Sommer CA, Gadue P, Spira A, Gouon-Evans V, Murphy GJ, Mostoslavsky G, Kotton DN (2011) Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest 121(6):2313–2325CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082 CrossRefPubMedGoogle Scholar
  14. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580. doi: 10.1089/ten.tea.2009.0730 CrossRefPubMedGoogle Scholar
  15. Daly AB, Wallis JM, Borg ZD, Bonvillain RW, Deng B, Ballif BA, Jaworski DM, Allen GB, Weiss DJ (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1–2):1–16. doi: 10.1089/ten.tea.2011.0301 CrossRefPubMedGoogle Scholar
  16. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541CrossRefPubMedGoogle Scholar
  17. Desai TJ, Malpel S, Flentke GR, Smith SM, Cardoso WV (2004) Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol 273(2):402–415. doi: 10.1016/j.ydbio.2004.04.039 CrossRefPubMedGoogle Scholar
  18. Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X (2011) Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138(5):971–981. doi: 10.1242/dev.053694 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR (2015) In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:25. doi: 10.7554/eLife.05098 CrossRefGoogle Scholar
  20. Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci USA 111(17):E1723–E1730. doi: 10.1073/pnas.1403470111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gadue P, Huber TL, Nostro MC, Kattman S, Keller GM (2005) Germ layer induction from embryonic stem cells. Exp Hematol 33(9):955–964. doi: 10.1016/j.exphem.2005.06.009 CrossRefPubMedGoogle Scholar
  22. Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 103(45):16806–16811. doi: 10.1073/pnas.0603916103 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui LQ, White ES, Niklason LE (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123(11):4950–4962. doi: 10.1172/jci68793 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014a) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308. doi: 10.1016/j.healun.2013.10.030 CrossRefPubMedGoogle Scholar
  25. Gilpin SE, Ren X, Okamoto T, Guyette JP, Mou HM, Rajagopal J, Mathisen DJ, Vacanti JP, Ott HC (2014b) Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann Thorac Surg 98(5):1721–1729. doi: 10.1016/j.athoracsur.2014.05.080 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and beta-Catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290–298. doi: 10.1016/j.devcel.2009.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, Mae S, Toyoda T, Sato-Otsubo A, Ogawa S, Osafune K, Mishima M (2014) Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 3(3):394–403. doi: 10.1016/j.stemcr.2014.07.005 CrossRefGoogle Scholar
  28. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24(11):1402–1411. doi: 10.1038/nbt1258 CrossRefPubMedGoogle Scholar
  29. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29(3):267–U153. doi: 10.1038/nbt.1788 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harris-Johnson KS, Domyan ET, Vezina CM, Sun X (2009) beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA 106(38):16287–16292. doi: 10.1073/pnas.0902274106 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hook GER, Brody AR, Cameron GS, Jetten AM, Gilmore LB, Nettesheim P (1987) Repopulation of denuded tracheas by Clara cells isolated from the lungs of rabbits. Exp Lung Res 12(4):311–329. doi: 10.3109/01902148709062843 CrossRefPubMedGoogle Scholar
  32. Huang SXL, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32(1):84. doi: 10.1038/nbt.2754 CrossRefPubMedGoogle Scholar
  33. Ikonomou L, Kotton DN (2015) Derivation of endodermal progenitors from pluripotent stem cells. J Cell Physiol 230(2):246–258. doi: 10.1002/jcp.24771 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Inayama Y, Hook GER, Brody AR, Cameron GS, Jetten AM, Gilmore LB, Gray T, Nettesheim P (1988) The differentiation potential of tracheal basal cells. Lab Investig 58(6):706–717PubMedGoogle Scholar
  35. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312. doi: 10.1038/nbt.3413 CrossRefPubMedGoogle Scholar
  36. Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835. doi: 10.1016/j.cell.2005.03.032 CrossRefPubMedGoogle Scholar
  37. Kimura S, Hara Y, Pineau T, FernandezSalguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69CrossRefPubMedGoogle Scholar
  38. Konishi S, Gotoh S, Tateishi K, Yamamoto Y, Korogi Y, Nagasaki T, Matsumoto H, Muro S, Hirai T, Ito I, Tsukita S, Mishima M (2016) Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep 6(1):18–25. doi: 10.1016/j.stemcr.2015.11.010 CrossRefGoogle Scholar
  39. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131(7):1651–1662. doi: 10.1242/dev.01044 CrossRefPubMedGoogle Scholar
  40. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345(6194):10. doi: 10.1126/science.1247125 CrossRefGoogle Scholar
  41. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373. doi: 10.1038/nature12517 CrossRefPubMedGoogle Scholar
  42. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 axis. Cell 156(3):440–455. doi: 10.1016/j.cell.2013.12.039 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li QY, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, Ott HC, Yarmush ML, Smith LM, Welham NV, Frey BL (2016) Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials 75:37–46. doi: 10.1016/j.biomaterials.2015.10.011 CrossRefPubMedGoogle Scholar
  44. Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61CrossRefPubMedGoogle Scholar
  45. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao YX, Jean JC, Kwok LW, Mou HM, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411. doi: 10.1016/j.stem.2012.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  46. McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 107(4):1414–1419. doi: 10.1073/pnas.0909207107 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453(7196):745–7U1. doi: 10.1038/nature07005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Minoo P, Su GS, Drum H, Bringas P, Kimura S (1999) Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 209(1):60–71CrossRefPubMedGoogle Scholar
  49. Morrisey EE, Hogan BLM (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23. doi: 10.1016/j.devcel.2009.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20(1):54–57CrossRefPubMedGoogle Scholar
  51. Mou HM, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10(4):385–397. doi: 10.1016/j.stem.2012.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11(4):18. doi: 10.1074/mcp.M111.014647 CrossRefGoogle Scholar
  53. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221. doi: 10.1038/nm1684 CrossRefPubMedGoogle Scholar
  54. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–U131. doi: 10.1038/nm.2193 CrossRefPubMedGoogle Scholar
  55. Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8(19):1083–1086CrossRefPubMedGoogle Scholar
  56. Petersen TH, Calle EA, Zhao LP, Lee EJ, Gui LQ, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. doi: 10.1126/science.1189345 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8):2581–2591. doi: 10.1089/ten.tea.2009.0659 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Randell SH, Comment CE, Ramaekers FCS, Nettesheim P (1991) Properties of rat tracheal epithelial-cells separated based on expression of cell-surface alpha-galactosyl end groups. Am J Respir Cell Mol Biol 4(6):544–554CrossRefPubMedGoogle Scholar
  59. Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM (2016) A retinoic acid-hedgehog cascade coordinates mesoderm-inducing signals and endoderm competence during lung specification. Cell Rep 16(1):66–78. doi: 10.1016/j.celrep.2016.05.060 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong LJ, Ghawi R, Scadden DT, Mathisen DJ, Ott HC (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33(10):1097. doi: 10.1038/nbt.3354 CrossRefPubMedGoogle Scholar
  61. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BLM (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106(31):12771–12775. doi: 10.1073/pnas.0906850106 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rodewald HR (2008) Thymus organogenesis. Annu Rev Immunol 26:355–388. doi:  10.1146/annurev.immunol.26.021607.090408
  63. Sasai Y (2013a) Cytosystems dynamics in self-organization of tissue architecture. Nature 493(7432):318–326. doi: 10.1038/nature11859 CrossRefPubMedGoogle Scholar
  64. Sasai Y (2013b) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530CrossRefPubMedGoogle Scholar
  65. Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132(1):35–47CrossRefPubMedGoogle Scholar
  66. Shamis Y, Hasson E, Soroker A, Bassat E, Shimoni Y, Ziv T, Sionov RV, Mitrani E (2011) Organ-specific scaffolds for in vitro expansion, differentiation, and organization of primary lung cells. Tissue Eng Part C-Methods 17(8):861–870. doi: 10.1089/ten.tec.2010.0717 CrossRefPubMedGoogle Scholar
  67. Shannon JM (1994) Induction of alveolar type-ii cell-differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol 166(2):600–614CrossRefPubMedGoogle Scholar
  68. Shannon JM, Hyatt BA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645. doi: 10.1146/annurev.physiol.66.032102.135749 CrossRefPubMedGoogle Scholar
  69. Shannon JM, Gebb SA, Nielsen LD (1999) Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 126(8):1675–1688PubMedGoogle Scholar
  70. Shojaie S, Ermini L, Ackerley C, Wang J, Chin S, Yeganeh B, Bilodeau M, Sambi M, Rogers I, Rossant J, Bear CE, Post M (2015) Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: requirement of matrix-bound HS proteoglycans. Stem Cell Rep 4(3):419–430. doi: 10.1016/j.stemcr.2015.01.004 CrossRefGoogle Scholar
  71. Sinner D, Rankin S, Lee M, Zorn AM (2004) Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 131(13):3069–3080. doi: 10.1242/dev.01176 CrossRefPubMedGoogle Scholar
  72. Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432. doi: 10.1016/j.molmed.2011.03.005 CrossRefPubMedGoogle Scholar
  73. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651. doi: 10.1038/nm.3154 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stabler CT, Caires LC, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, Lelkes PI (2016) Enhanced re-endothelialization of decellularized rat lungs. Tissue Eng Part C-Methods 22(5):439–450. doi: 10.1089/ten.tec.2016.0012 CrossRefPubMedGoogle Scholar
  75. Suki B (2014) Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J Cell Physiol 229(9):1134–1140. doi: 10.1002/jcp.24600 CrossRefPubMedGoogle Scholar
  76. Tadokoro T, Wang Y, Barak LS, Bai YS, Randell SH, Hogan BLM (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci USA 111(35):E3641–E3649. doi: 10.1073/pnas.1409781111 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tam PPL, Loebel DAF, Tanaka SS (2006) Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16(4):419–425. doi: 10.1016/j.gde.2006.06.008 CrossRefPubMedGoogle Scholar
  78. Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33(12):3401–3410. doi: 10.1016/j.biomaterials.2012.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Totonelli G, Maghsoudlou P, Georgiades F, Garriboli M, Koshy K, Turmaine M, Ashworth M, Sebire NJ, Pierro A, Eaton S, De Coppi P (2013) Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int 29(1):87–95. doi: 10.1007/s00383-012-3194-3 CrossRefPubMedGoogle Scholar
  80. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–U120. doi: 10.1038/nm.2170 CrossRefPubMedPubMedCentralGoogle Scholar
  81. van der Veen VC, van der Wal MBA, van Leeuwen MCE, Ulrich MMW, Middelkoop E (2010) Biological background of dermal substitutes. Burns 36(3):305–321. doi: 10.1016/j.burns.2009.07.012 CrossRefPubMedGoogle Scholar
  82. van Vranken BE, Romanska HM, Polak JM, Rippon HJ, Shannon JM, Bishop AE (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11(7–8):1177–1187CrossRefPubMedGoogle Scholar
  83. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, Tan K, Tan V, Liu FC, Looney MR, Matthay MA, Rock JR, Chapman HA (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517(7536):621–U211. doi: 10.1038/nature14112 CrossRefPubMedGoogle Scholar
  84. Wallis JM, Borg ZD, Daly AB, Deng B, Ballif BA, Allen GB, Jaworski DM, Weiss DJ (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C-Methods 18(6):420–432. doi: 10.1089/ten.tec.2011.0567 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410CrossRefPubMedGoogle Scholar
  86. Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30(9):876–U108. doi: 10.1038/nbt.2328 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zimmermann B (1987) Lung organoid culture. Differentiation 36(1):86–109. doi: 10.1111/j.1432-0436.1987.tb00183.x CrossRefPubMedGoogle Scholar
  88. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251. doi: 10.1146/annurev.cellbio.042308.113344 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Center for Regenerative Medicine (CReM) of Boston University and Boston Medical CenterBostonUSA

Personalised recommendations