Advertisement

Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications

  • Falk M. Hante
  • Günter Leugering
  • Alexander Martin
  • Lars Schewe
  • Martin Schmidt
Chapter
Part of the Industrial and Applied Mathematics book series (INAMA)

Abstract

We consider optimal control problems for the flow of gas or fresh water in pipe networks as well as drainage or sewer systems in open canals. The equations of motion are taken to be represented by the nonlinear isothermal Euler gas equations, the water hammer equations, or the St. Venant equations for flow. We formulate model hierarchies and derive an abstract model for such network flow problems including pipes, junctions, and controllable elements such as valves, weirs, pumps, as well as compressors. We use the abstract model to give an overview of the known results and challenges concerning equilibria, well-posedness, controllability, and optimal control. A major challenge concerning the optimization is to deal with switching on–off states that are inherent to controllable devices in such applications combined with continuous simulation and optimization of the gas flow. We formulate the corresponding mixed-integer nonlinear optimal control problems and outline a decomposition approach as a solution technique.

Keywords

Networks Pipes Canals Euler and St. Venant equations Hierarchy of models Domain decomposition Controllability Optimal control 

Notes

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for their support within projects A03, A05, B07, and B08 in the Sonderforschungsbereich/Transregio 154 Mathematical Modeling, Simulation and Optimization using the Example of Gas Networks. In addition, parts of this research were performed as part of the Energie Campus Nürnberg and supported by funding through the “Aufbruch Bayern (Bavaria on the move)” initiative of the state of Bavaria.

References

  1. 1.
    Abreu, J., Cabrera, E., Izquierdo, J., García-Serra, J.: Flow modeling in pressurized systems revisited. J. Hydraul. Eng. 125(11), 1154–1169 (1999)CrossRefGoogle Scholar
  2. 2.
    Adimurthi, Veerappa Gowda, G.D.: Conservation law with discontinuous flux. J. Math. Kyoto Univ. 43(1), 27–70 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Adimurthi, Mishra, S.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Amin, S., Hante, F.M., Bayen, A.M.: On stability of switched linear hyperbolic conservation laws with reflecting boundaries. In: Hybrid Systems: Computation and Control, vol. 4981. Lecture Notes in Computer Science, pp. 602–605. Springer (2008)Google Scholar
  5. 5.
    Amin, S., Hante, F.M., Bayen, A.M.: Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions. In: 47th IEEE Conference on Decision and Control, 2008, CDC 2008, pp. 2081–2086. IEEE (2008)Google Scholar
  6. 6.
    Amin, S., Hante, F.M., Bayen, A.M.: Exponential stability of switched linear hyperbolic initial-boundary value problems. IEEE Trans. Autom. Control 57(2), 291–301 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bastin, G., Coron, J.-M.: On boundary feedback stabilization of non-uniform linear \(2\times 2\) hyperbolic systems over a bounded interval. Syst. Control Lett. 60(11), 900–906 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Jacques, F.: Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bressan, A., Shen, W.: Optimality conditions for solutions to hyperbolic balance laws. In: Control Methods in PDE-Dynamical Systems, vol. 426. Contemporary Mathematics, pp. 129–152. American Mathematical Society, Providence, RI (2007)Google Scholar
  10. 10.
    Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9(2), 601–623 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Buchheim, C., Meyer, C., Schäfer, R.: Combinatorial optimal control of semilinear elliptic PDEs. Technical report, Fakultät für Mathematik, TU Dortmund (2015)Google Scholar
  12. 12.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\) function. Adv. Comput. Math. 5(4), 329–359 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Coron, J.-M., Glass, O., Wang, Z.: Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control Optim. 48(5), 3105–3122 (2009)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Coron, J.-M., Vazquez, R., Krstic, M., Bastin, G.: Local exponential \(H^2\) stabilization of a \(2\times 2\) quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51(3), 2005–2035 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Daafouz, J., Di Benedetto, M.D., Blondel, V.D., Ferrari-Trecate, G., Hetel, L., Johansson, M., Juloski, A.L., Paoletti, S., Pola, G., De Santis, E., Vidal, R.: Switched and piecewise affine systems. In: Handbook of Hybrid Systems Control, pp. 87–137. Cambridge University Press, Cambridge (2009)Google Scholar
  16. 16.
    Dáger, R., Zuazua, E.: Wave Propagation, Observation and Control in \(1\text{-}d\) Flexible Multi-Structures, vol. 50. Mathématiques & Applications (Berlin). Springer, Berlin (2006)Google Scholar
  17. 17.
    Dick, M., Gugat, M., Herty, M., Leugering, G., Steffensen, S., Wang, K.: Stabilization of networked hyperbolic systems with boundary feedback. In: Trends in PDE Constrained Optimization, vol. 165. International Series of Numerical Mathematics, pp. 487–504. Birkhäuser/Springer, Cham (2014)Google Scholar
  18. 18.
    Dick, M., Gugat, M., Leugering, G.: Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media 5(4), 691–709 (2010)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Dick, M., Gugat, M., Leugering, G.: A strict \(H^1\)-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim. 1(2), 225–244 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Domschke, P., Kolb, O., Lang, J.: Adjoint-based error control for the simulation and optimization of gas and water supply networks. Appl. Math. Comput. 259, 1003–1018 (2015)MathSciNetGoogle Scholar
  22. 22.
    Dos Santos, V., Bastin, G., Coron, J.-M., d’Andréa Novel, B.: Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments. Autom. J. IFAC 44(5), 1310–1318 (2008)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Fügenschuh, A., Göttlich, S., Herty, M., Klar, A., Martin, A.: A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J. Sci. Comput. 30(3), 1490–1507 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Fügenschuh, A., Geißler, B., Gollmer, R., Morsi, A., Pfetsch, M.E., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Physical and technical fundamentals of gas networks. In: Koch, et al. [51], Chap. 2, pp. 17–44Google Scholar
  27. 27.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)CrossRefMATHGoogle Scholar
  28. 28.
    Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 287–314. Springer, New York (2012)CrossRefGoogle Scholar
  29. 29.
    Geißler, B., Kolb, O., Lang, J., Leugering, G., Martin, A., Morsi, A.: Mixed integer linear models for the optimization of dynamical transport networks. Math. Methods Oper. Res. 73(3), 339–362 (2011)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving power-constrained gas transportation problems using an MIP-based alternating direction method. Comput. Chem. Eng. 82, 303–317 (2015)CrossRefGoogle Scholar
  31. 31.
    Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving highly detailed gas transport MINLPs: block separability and penalty alternating direction methods. Technical report, 07 (2016)Google Scholar
  32. 32.
    Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 9(R2), 41–76 (1975)Google Scholar
  34. 34.
    Gugat, M., Leugering, G.: Global boundary controllability of the de St. Venant equations between steady states. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 20(1), 1–11 (2003)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Gugat, M., Leugering, G.: Global boundary controllability of the Saint-Venant system for sloped canals with friction. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 26(1), 257–270 (2009)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Gugat, M., Dick, M., Leugering, G.: Stabilization of the gas flow in star-shaped networks by feedback controls with varying delay. In: System Modeling and Optimization, vol. 391. IFIP Advances in Information and Communication Technology, pp. 255–265. Springer, Heidelberg (2013)Google Scholar
  37. 37.
    Gugat, M., Hante, F.M., Hirsch-Dick, M., Leugering, G.: Stationary states in gas networks. Netw. Heterog. Media 10(2), 295–320 (2015)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Gugat, M., Leugering, G., Georg Schmidt, E.J.P.: Global controllability between steady supercritical flows in channel networks. Math. Methods Appl. Sci. 27(7), 781–802 (2004)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Gugat, M., Leugering, G., Martin, A., Schmidt, M., Sirvent, M., Wintergerst, D.: Towards simulation based mixed-integer optimization with differential equations. Technical report, Preprint FAU (2016, submitted)Google Scholar
  40. 40.
    Gugat, M., Leugering, G., Schittkowski, K., Georg Schmidt, E.J.P.: Modelling, stabilization, and control of flow in networks of open channels. In: Online Optimization of Large Scale Systems, pp. 251–270. Springer, Berlin (2001)Google Scholar
  41. 41.
    Gugat, M., Schultz, R., Wintergerst, D.: Networks of pipelines for gas with nonconstant compressibility factor: stationary states. In: Computational and Applied Mathematics, pp. 1–32 (2016)Google Scholar
  42. 42.
    Gugat, M., Wintergerst, D.: Finite time blow-up of traveling wave solutions for the flow of real gas through pipeline networks (2016)Google Scholar
  43. 43.
    Hante, F.M.: Relaxation methods for hyperbolic PDE mixed-integer optimal control problems. ArXiv e-prints, 09 (2015)Google Scholar
  44. 44.
    Hante, F.M., Leugering, G.: Optimal boundary control of convention-reaction transport systems with binary control functions. Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 5469, pp. 209–222. Springer, Berlin (2009)CrossRefGoogle Scholar
  45. 45.
    Hante, F.M., Leugering, G., Seidman, T.I.: Modeling and analysis of modal switching in networked transport systems. Appl. Math. Optim. 59(2), 275–292 (2009)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Hante, F.M., Leugering, G., Seidman, T.I.: An augmented BV setting for feedback switching control. J. Syst. Sci. Complex. 23(3), 456–466 (2010)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Hante, F.M., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55(1), 197–225 (2013)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Hante, F.M., Sigalotti, M.: Existence of common Lyapunov functions for infinite-dimensional switched linear systems. In: 49th IEEE Conference on Decision and Control (CDC) 2010, CDC 2010, pp. 5668–5673. IEEE (2010)Google Scholar
  49. 49.
    Hante, F.M., Sigalotti, M.: Converse Lyapunov theorems for switched systems in Banach and Hilbert spaces. SIAM J. Control Optim. 49(2), 752–770 (2011)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws. In: Applied Mathematical Sciences, vol. 152, second edn. Springer, Heidelberg (2015)Google Scholar
  51. 51.
    Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (eds.): Evaluating Gas Network Capacities. SIAM-MOS series on Optimization. SIAM (2015)Google Scholar
  52. 52.
    Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: On the analysis and control of hyperbolic systems associated with vibrating networks. Proc. Roy. Soc. Edinburgh Sect. A 124(1), 77–104 (1994)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, analysis and control of dynamic elastic multi-link structures. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (1994)Google Scholar
  54. 54.
    Lagnese, J.E., Leugering, G.: Domain decomposition methods in optimal control of partial differential equations, vol. 148. International Series of Numerical Mathematics. Birkhäuser Verlag (2004)Google Scholar
  55. 55.
    Lamare, P.-O., Girard, A., Prieur, C.: Switching rules for stabilization of linear systems of conservation laws. SIAM J. Control Optim. 53(3), 1599–1624 (2015)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Leugering, G., Georg Schmidt, E.J.P.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41(1), 164–180 (2002)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser (1992)Google Scholar
  58. 58.
    Le Veque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)Google Scholar
  59. 59.
    Li, T.: Controllability and observability for quasilinear hyperbolic systems, vol. 3. AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO; Higher Education Press, Beijing (2010)Google Scholar
  60. 60.
    Mahlke, D., Martin, A., Moritz, S.: A mixed integer approach for time-dependent gas network optimization. Optim. Methods Softw. 25(4–6), 625–644 (2010)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Martin, A., Klamroth, K., Lang, J., Leugering, G., Morsi, A., Oberlack, M., Ostrowski, M., Rosen, R., (eds.): Mathematical Optimization of Water Networks. Birkhäuser (2012)Google Scholar
  62. 62.
    Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105(2–3, Ser. B), 563–582 (2006)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Morsi, A., Geißler, B., Martin, A.: Mixed integer optimization of water supply networks. In: Mathematical Optimization of Water Networks, vol. 162. International Series of Numerical Mathematics, pp. 35–54. Birkhäuser/Springer Basel AG, Basel (2012)Google Scholar
  64. 64.
    Nicaise, S.: Control and stabilization of 2x2 hyperbolic systems on graphs. Technical report, Université de Valenciennes et du Hainaut Cambrésis (2016). To appear in MCRF 2017Google Scholar
  65. 65.
    Pfaff, S., Ulbrich, S.: Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data. SIAM J. Control Optim. 53(3), 1250–1277 (2015)CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Pfaff, S., Ulbrich, S., Leugering, G.: Optimal control of nonlinear hyperbolic conservation laws with switching. In: Trends in PDE constrained optimization, vol. 165. International Series of Numerical Mathematics, pp. 109–131. Birkhäuser/Springer, Cham (2014)Google Scholar
  67. 67.
    Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Rüffler, F., Hante, F.M.: Optimal switching for hybrid semilinear evolutions. Nonlinear Anal. Hybrid Syst. 22, 215–227 (2016)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Sahinidis, N.V., Grossmann, I.E.: Convergence properties of generalized benders decomposition. Comput. Chem. Eng. 15(7), 481–491 (1991)CrossRefGoogle Scholar
  70. 70.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations, vol. 258. Grundlehren der mathematischen Wissenschaften. Springer Verlag (1983)Google Scholar
  71. 71.
    Sontag, E.: From linear to nonlinear: some complexity comparisons. In: 1995 Proceedings of the 34th IEEE Conference on Decision and Control, vol. 3, pp. 2916–2920. IEEE (1995)Google Scholar
  72. 72.
    Sontag, E.D.: Nonlinear regulation: the piecewise linear approach. IEEE Trans. Autom. Control 26(2), 346–358 (1981)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    Ulbrich, S.: A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41(3), 740–797 (2002). (electronic)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Falk M. Hante
    • 1
  • Günter Leugering
    • 1
  • Alexander Martin
    • 2
  • Lars Schewe
    • 2
  • Martin Schmidt
    • 2
    • 3
  1. 1.Lehrstuhl Angewandte Mathematik IIFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Discrete OptimizationFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Energie Campus NürnbergNürnbergGermany

Personalised recommendations