A Multi Dynamic Binary Black Hole Algorithm Applied to Set Covering Problem

  • José GarcíaEmail author
  • Broderick Crawford
  • Ricardo Soto
  • Pablo García
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)


The set covering problem seeks for minimum cost family of subsets from n given subsets, which together covers the complete set. In this article, we present multi dynamic binary black hole algorithm for resolving the set covering problem. This algorithm has the particularity to propose a generic dynamic binarization method to manage the exploration and exploitation properties. Furthermore we explore the implementation of the algorithm on Apache Spark distributed framework.


Metaheuristics Binarization Set covering problem Black hole Spark big data framework 



Broderick Crawford is supported by Grant CONICYT/ FONDECYT/REGULAR/1140897 and Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455.


  1. 1.
    Abdelaziz, A.Y., Osama, R.A., El-Khodary, S.M., Panigrahi, B.K.: Distribution systems reconfiguration using the hyper-cube ant colony optimization algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011. LNCS, vol. 7077, pp. 257–266. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-27242-4_30 CrossRefGoogle Scholar
  2. 2.
    Tayarani-N, M.H., Akbarzadeh-T, M.R.: Magnetic optimization algorithms, a new synthesis. In: IEEE International Conference on Evolutionary Computation, pp. 2659–2664 (2008)Google Scholar
  3. 3.
    Bacanin, N., Brajevic, I., Tuba, M.: Firefly algorithm applied to integer programming problems. Recent Adv. Math. 143–148 (2013)Google Scholar
  4. 4.
    Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 94(2), 392–404 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost-and coverage-correlated set-covering problems. Ann. Oper. Res. 86, 611–627 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crawford, B., Soto, R., Berríos, N., Johnson, F., Paredes, F., Castro, C., Norero, E.: A binary cat swarm optimization algorithm for the non-unicost set covering problem. In: Mathematical Problems in Engineering (2015)Google Scholar
  8. 8.
    Crawford, B., Soto, R., Monfroy, E., Paredes, F., Palma, W.: A hybrid ant algorithm for the set covering problem. Int. J. Phys. Sci. 6(19), 4667–4673 (2014)Google Scholar
  9. 9.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. AISC, vol. 285, pp. 65–73. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-06740-7_6 CrossRefGoogle Scholar
  10. 10.
    Crawford, B., Soto, R., Peña, C., Riquelme-Leiva, M., Torres-Rojas, C., Johnson, F., Paredes, F.: Binarization methods for shuffled frog leaping algorithms that solve set covering problems. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z., Silhavy, P. (eds.) Software Engineering in Intelligent Systems. AISC, vol. 349, pp. 317–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18473-9_31 Google Scholar
  11. 11.
    Gary, M.R., Johnson, D.S.: Computers and intractability. A Guide to the Theory of NP-Completeness (1979)Google Scholar
  12. 12.
    Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Beasley, J.: A lagrangian heuristic for set-covering problems. Naval Res. Logistics (NRL) 37(1), 151–164 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lozano, M., Molina, D., García-Martínez, C., Herrera, F.: Evolutionary algorithms and other metaheuristics for continuous optimization problems (2010)Google Scholar
  15. 15.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shyam, R., Kumar, S., Poornachandran, P., Soman, K.P.: Apache Spark a big data analytics platform for smart grid. Procedia Technol. 21, 171–178 (2015)CrossRefGoogle Scholar
  17. 17.
    Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F.: A binary cuckoo search algorithm for solving the set covering problem. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 88–97. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-18833-1_10 CrossRefGoogle Scholar
  18. 18.
    Vasko, F.J., Knolle, P.J., Spiegel, D.S.: An empirical study of hybrid genetic algorithms for the set covering problem. J. Oper. Res. Soc. 56(10), 1213–1223 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct. Multi. Optim. 26(1–2), 121–131 (2004)CrossRefGoogle Scholar
  20. 20.
    Yelbay, B., Birbil, Şİ., Bülbül, K.: The set covering problem revisited: an empirical study of the value of dual information. J. Ind. Manage. Optim. 11(2), 575–594 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10, 10 (2010)Google Scholar
  22. 22.
    Zhai, Y., Ong, Y.-S., Tsang, I.W.: The emerging big dimensionality. IEEE Comput. Intell. Mag. 9(3), 14–26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • José García
    • 1
    • 2
    Email author
  • Broderick Crawford
    • 2
  • Ricardo Soto
    • 2
  • Pablo García
    • 1
  1. 1.Telefónica Investigación y DesarrolloSantiagoChile
  2. 2.Pontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations