Skip to main content

Hype and Hopes of Stem Cell Research in Neurodegenerative Diseases

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Hope from the regeneration promoting effects of stem cells have provided new insights for understanding diseases that were previously thought to have a limited prognostic improvement upon medical intervention. This is especially indicated in neurodegenerative diseases, which until the discovery and research in stem cells were thought to have minimal regenerative capabilities. This review covers various treatment modalities involving different types of stem cells, such as human embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and neural stem cells, which have been tested for various neurodegenerative disorders such as Multiple Sclerosis, Alzheimer’s disease, Parkinson’s disease and Age Related Macular Degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHSCT:

Autologous hematopoietic stem cell transplantation

AMD:

Age-related macular degeneration

aNSCs:

Adult neural stem cells

CNS:

Central nervous system

EAE:

Experimental autoimmune encephalomyelitis

GID:

Graft-induced dyskinesia

hPDLSCs:

Human periodontal ligament stem cells

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

MSC-NPs:

Mesenchymal stem cell derived-neural progenitors

MSCs:

Mesenchymal stem cells

NPC:

Neural precursor cell

NSCs:

Neural stem cells

OPCs:

Oligodendrocyte progenitor cells

PPMS:

Primary progressive MS

RPCs:

Retinal progenitor cells

RPE:

Retinal pigment epithelium

RRMS:

Relapsing-remitting disease

S-MSCs:

MSCs isolated from skin tissue

SPMS:

Secondary progressive MS

sTNFR1:

Soluble TNF receptor 1

TEPs:

Thymic epithelial progenitors

TNF-α:

Tumor necrosis factor α

VPA:

Valproic acid

References

  1. Constantin G, Marconi S, Rossi B, et al. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009;27:2624–35.

    Article  CAS  PubMed  Google Scholar 

  2. Bai L, Lennon DP, Eaton V, et al. Miller human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57:1192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.

    Article  PubMed  Google Scholar 

  4. Kurte M, Bravo-Alegria J, Torres A, et al. Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int. 2015;2015:140170.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Zhang J, Li Y, Chen J, et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol. 2005;195:16–26.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Li Y, Lu M, et al. Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res. 2006;84:587–95.

    Article  CAS  PubMed  Google Scholar 

  7. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7:395–406.

    Article  CAS  PubMed  Google Scholar 

  8. Aharonowiz M, Einstein O, Fainstein N, et al. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3:e3145.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uccelli A, Mancardi G. Stem cell transplantation in multiple sclerosis. Curr Opin Neurol. 2010;23:218–25.

    Article  PubMed  Google Scholar 

  10. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96:10711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kemp K, Hares K, Mallam E, et al. Mesenchymal stem cell secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem. 2009;114:1569–80.

    Article  Google Scholar 

  13. Wilkins A, Kemp K, Ginty M, et al. Human bone marrowderived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3:63–70.

    Article  CAS  PubMed  Google Scholar 

  14. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  15. Lanza C, Morando S, Voci A, et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem. 2009;110:1674–84.

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Li SP, Fu JS, et al. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis. Int J Dev Neurosci. 2016;49:60–6.

    Article  CAS  PubMed  Google Scholar 

  17. Ke F, Zhang L, Liu Z, et al. Soluble tumor necrosis factor receptor 1 released by skin-derived mesenchymal stem cells is critical for inhibiting Th17 cell differentiation. Stem Cells Transl Med. 2016;5:301–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shalaby SM, Sabbah NA, Saber T, et al. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life. 2016;68:106–15.

    Article  CAS  PubMed  Google Scholar 

  19. Trubiani O, Giacoppo S, Ballerini P, et al. Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res Ther. 2016;4:7.

    Google Scholar 

  20. Rafieemehr H, Kheyrandish M, Soleimani M. Neuroprotective effects of transplanted mesenchymal stromal cells-derived human umbilical cord blood neural progenitor cells in EAE. Iran J Allergy Asthma Immunol. 2015;14:596–604.

    PubMed  Google Scholar 

  21. Marin BC, Suardiaz GM, Hurtado GI, et al. Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in a relapsing-remitting multiple sclerosis model. Stem Cell Res Ther. 2014;5:134.

    Article  Google Scholar 

  22. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, et al. Hermann delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132:2239–51.

    Article  PubMed  Google Scholar 

  23. Einstein O, Grigoriadis N, Mizrachi-Kol R, et al. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp Neurol. 2006;198:275–84.

    Article  CAS  PubMed  Google Scholar 

  24. Wang WW, Lu L, Bao TH, et al. Scutellarin alleviates behavioral deficits in a mouse model of multiple sclerosis, possibly through protecting neural stem cells. J Mol Neurosci. 2016;58:210–20.

    Article  CAS  PubMed  Google Scholar 

  25. Dehgan S, Hesaraki M, Soleimani M, et al. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience. 2016;24:178–89.

    Article  Google Scholar 

  26. Ravanidis S, Poulatsidou KN, Lagoudaki R, et al. Subcutaneous transplantation of neural precursor cells in experimental autoimmune encephalomyelitis reduces chemotactic signals in the central nervous system. Stem Cells Transl Med. 2015;4:1450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glenn JD, Smith MD, Kirby LA, et al. Disparate effects of mesenchymal stem cells in experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. PLoS One. 2015;10:e0139008.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ravanidis S, Bogie JF, Donders R, et al. Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Res Ther. 2015;16:176.

    Article  Google Scholar 

  29. Merzaban JS, Imitola J, Starossom SC, et al. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology. 2015;25:1392–409.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Salinas TL, Berner G, Jacobsen K, et al. Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain Behav Immun. 2015;50:155–65.

    Article  Google Scholar 

  31. Braun SM, Pilz GA, Machado RA, et al. Programming hippocampal neural stem/progenitor cells into oligodendrocytes enhances remyelination in the adult brain after injury. Cell Rep. 2015;11:1679–85.

    Article  CAS  PubMed  Google Scholar 

  32. El-Akabawy G, Rashed LA. Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. Ann Anat. 2015;198:11–20.

    Article  PubMed  Google Scholar 

  33. Su M, Song Y, He Z, et al. Administration of embryonic stem cell-derived thymic epithelial progenitors expressing MOG induces antigen-specific tolerance and ameliorates experimental autoimmune encephalomyelitis. J Autoimmun. 2015;58:36–47.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao J, Yang R, Biswas S, et al. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int J Mol Sci. 2015;16:9283–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol. 2011;10:649–56.

    Article  CAS  PubMed  Google Scholar 

  36. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mohyeddin BM, Yazdanbakhsh S, Lotfi J, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol. 2007;4:50–7.

    Google Scholar 

  38. Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227:185–9.

    Article  CAS  PubMed  Google Scholar 

  39. Connick P, Kolappan M, Patani R, et al. The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials. 2011;12:62.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bonab MM, Sahraian MA, Aghsaie A, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7:407–14.

    Article  CAS  PubMed  Google Scholar 

  41. Harris VK, Vyshkina T, Chirls S, et al. Intrathecal administration of mesenchymal stem cell-neural progenitors in multiple sclerosis: an interim analysis of a phase I clinical trial. Abstract ACTRIMS. 2014.

    Google Scholar 

  42. Llufriu S, Sepulveda M, Blanco Y, et al. Randomized placebo- controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One. 2014;9:e113936.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lublin FD, Bowen JD, Huddlestone J, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord. 2014;3:696–704.

    Article  PubMed  Google Scholar 

  44. Burt RK, Balabanov R, Han X, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015;20:275–84.

    Article  Google Scholar 

  45. Mancardi GL, Sormani MP, Gualandi F, et al. ASTIMS Haemato-neurological Collaborative Group, on behalf of the Autoimmune Disease Working Party (ADWP) of the European Group for Blood and Marrow Transplantation (EBMT). Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84:981–8.

    Google Scholar 

  46. Kyrcz-Krzemien S, Helbig G, Torba K, et al. Safety and efficacy of hematopoietic stem cells mobilization in patients with multiple sclerosis. Hematology. 2016;21:42–5.

    Article  PubMed  Google Scholar 

  47. Kessler JA. Applications of stem cell biology in clinical medicine. In Harrisons internal medicine, 17th edn. New York: McGraw-Hill Education; 2017, p. 427–30.

    Google Scholar 

  48. Turgeman G. The therapeutic potential of mesenchymal stem cells in Alzheimer’s disease: converging mechanisms. Neural Regen Res. 2015;5:698–9.

    Article  Google Scholar 

  49. Lee HJ, Lee JK, Lee H, et al. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging. 2010;33:588–602.

    Article  PubMed  Google Scholar 

  50. Mark H, Tuszynski TL, David PS. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005;11:551–5.

    Article  Google Scholar 

  51. Lilja AM, Malmsten L, Röjdner J, et al. Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic α7 nicotinic receptor drugs. Neural Plast. 2015;2015:370432.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ager RR, Davis JL, Agazaryan A, et al. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenicmodels of Alzheimer’s disease and neuronal loss. Hippocampus. 2015;25:813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blurton-Jones M, Spencer B, Michael S, et al. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther. 2014;5:46.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Blurton-Jones M, Kitazawaa M, Coriaa HM, et al. Neural stem cells improve cognition via BDNF, in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 2009;106:13594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Israel MA, Yuan SY, Herrera C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Byrne JA. Developing neural stem cell based treatments for neurodegenerative diseases. Stem Cell Res Ther. 2014;5:72.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ross CA, Akimov SS. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet. 2014;23:R17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldstein LS, Reyna S, Woodruff G. Probing the secrets of Alzheimer’s disease using human-induced pluripotent stem cell technology. Neurotherapeutics. 2015;12:121–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hunsberger JG, Rao M, Kurtzberg J, et al. Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol. 2015; doi:10.1016/S1474-4422(15)00332-4.

  60. Yao SC, Hart AD, Terzella MJ. An evidence-based osteopathic approach to Parkinson disease. Osteopath Fam Physician. 2013;5:96–101.

    Article  Google Scholar 

  61. Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med. 2012;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Olanow CW, Goetz CG, Kordower JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–14.

    Article  PubMed  Google Scholar 

  63. Goodarzi P, Aghayan HR, Larijani B, et al. Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran. 2015;29:168.

    PubMed  PubMed Central  Google Scholar 

  64. Kang X, Xu H, Teng S, et al. Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc Natl Acad Sci U S A. 2014;111:15804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park HJ, Lee PH, Bang OY, et al. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem. 2008;107:141–51.

    Article  CAS  PubMed  Google Scholar 

  66. Venkataramana NK, Kumar SK, Balaraju S, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res. 2010;155:62–70.

    Article  CAS  PubMed  Google Scholar 

  67. Xu X, Huang J, Li J, et al. Induced pluripotent stem cells and Parkinson’s disease: modelling and treatment. Cell Prolif. 2016;49:14–26.

    Article  PubMed  Google Scholar 

  68. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–9.

    Article  CAS  PubMed  Google Scholar 

  69. Canet-Aviles R, Lomax GP, Feigal EG, et al. Proceedings: Cell therapies for Parkinson’s disease from discovery to clinic. Stem Cells Transl Med. 2014;3:979–91.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Barker RA, Parmar M, Kirkeby A, et al. Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinsons Dis. 2016;6:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Klein R. Overview of progress in the epidemiology of age-related macular degeneration. Ophthalmic Epidemiol. 2007;14:1847.

    Article  Google Scholar 

  72. Peden MC, Suner IJ, Hammer ME, et al. Long-term outcomes in eyes receiving fixed-interval dosing of anti-vascular endothelial growth factor agents for wet age-related macular degeneration. Ophthalmology. 2015;122:803–8.

    Article  PubMed  Google Scholar 

  73. Decembrini S, Cananzi M, Gualdoni S, et al. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev. 2011;20:851–63.

    Article  CAS  PubMed  Google Scholar 

  74. Blenkinsop TA. Adult human RPE for transplantation: renewing an old promise. Adv Reg Biol. 2015;2:27144.

    Google Scholar 

  75. Decembrini S, Koch U, Radtke F, et al. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep. 2014;2:853–65.

    Article  CAS  Google Scholar 

  76. Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31:741–7.

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.

    Article  PubMed  Google Scholar 

  78. Cui L, Guan Y, Qu Z, et al. WNT signaling determines tumorigenicity and function of ESC-derived retinal progenitors. J Clin Invest. 2013;123:1647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004;45:1020–5.

    Article  PubMed  Google Scholar 

  80. McGill TJ, Cottam B, Lu B, et al. Transplantation of human central nervous system stem cells – neuroprotection in retinal degeneration. Eur J Neurosci. 2012;35:468–77.

    Article  PubMed  Google Scholar 

  81. Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci. 2006;47:1646–52.

    Article  PubMed  Google Scholar 

  82. Atmaca-Sonmez P, Li Y, Yamauchi Y, et al. Systemically transferred hematopoietic stem cells home to the subretinal space and express RPE-65 in a mouse model of retinal pigment epithelium damage. Exp Eye Res. 2006;83:1295–302.

    Article  CAS  PubMed  Google Scholar 

  83. Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25:602–11.

    Article  CAS  PubMed  Google Scholar 

  84. Arnhold S, Absenger Y, Klein H, et al. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol. 2007;245:414–22.

    Article  CAS  PubMed  Google Scholar 

  85. Lu B, Wang S, Girman S, et al. Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res. 2010;91:449–55.

    Article  CAS  PubMed  Google Scholar 

  86. Binder S, Stanzel BV, Krebs I, et al. Transplantation of the RPE in AMD. Prog Retin Eye Res. 2007;26:516–54.

    Article  PubMed  Google Scholar 

  87. Lindvall O, Kokaia Z, Martinez Serrano A. Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med. 2004;10:S42–50.

    Article  PubMed  Google Scholar 

  88. Martin G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7:395–406.

    Article  Google Scholar 

  89. Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436:266–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest:

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Anand Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, N.K. et al. (2017). Hype and Hopes of Stem Cell Research in Neurodegenerative Diseases. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_13

Download citation

Publish with us

Policies and ethics