Advertisement

Evolutionary Process: Parallelism Analysis of Differential Evolution Algorithm Based on Graph Theory

  • Xiaoqi Peng
  • Zhifeng Hao
  • Han HuangEmail author
  • Hongyue Wu
  • Fangqing Liu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 682)

Abstract

Computation intelligence is becoming an essential technology during the development of human society. There are many family members in computation intelligence. Many researchers have already studied the mathematical inherent rules of these biology-inspired algorithms to found methods to improve the capacity of the algorithms. In the family of computation intelligence, differential evolution (DE) algorithm shows performance optimization ability. In order to explore the reason why DE could have stable and robust quality. We analyzed the parallelism of the evolutionary process in the iterative process of DE algorithm based on graph theory. By the knowledge of graph theory, it will directly exhibit the essential reason of differential evolution in the algorithm. The research will reveal that the superior DE algorithm have more extent parallelism ability than the elementary algorithm.

Keywords

Computation intelligence Differential evolution Parallel characteristic Population Graph theory 

Notes

Acknowledgments

This work is supported in part by NSFC-Guangdong Joint Found (U1501254), National Natural Science Foundation of China (61370102, 61472089, 61572143), Natural Science Foundation of Guangdong(2014A030306004, 2014A030308008), Science and Technology Planning Project of Guangdong (2013B 051000076, 2015B010108006, 2015B010131015), Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306050), the Fundamental Research Funds for the Central Universities, SCUT (2015PT022) and Guangdong High-level personnel of special support program (2014TQ01X664).

References

  1. 1.
    Yao, X.: An overview of evolutionary computation. J. Adv. Softw. Res. 3(1), 12–29 (1996)MathSciNetGoogle Scholar
  2. 2.
    Eiben, A.E., Rudolph, G.: Theory of evolutionary algorithms: a bird eye view. J. Theoret. Comput. Sci. 229, 3–9 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dorigo, M., Sttzle, T.: Ant Colony Optimization, 1st edn. MIT Press, Cambridge (2004). (Chap. 4)zbMATHGoogle Scholar
  4. 4.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43 (1995)Google Scholar
  5. 5.
    Storn, R., Price, K.: Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. ICSI, Berkeley (1995)zbMATHGoogle Scholar
  6. 6.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1998)zbMATHGoogle Scholar
  7. 7.
    He, J., Yao, X.: From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6, 495–511 (2002)CrossRefGoogle Scholar
  8. 8.
    Huang, H., Xu, W.D., Zhang, Y.S., Lin, Z.Y., Hao, Z.F.: Runtime analysis for continuous (1+1) evolutionary algorithm based on average gain model. China Sci. Inf. Sci. 44(6), 811–824 (2014)Google Scholar
  9. 9.
    Stutzle, T., Dorigo, M.: A short convergence proof for a class of ACO algorithms. IEEE Trans. Evol. Comput. 6(4), 358–365 (2002)CrossRefGoogle Scholar
  10. 10.
    Ugolotti, R., Cagnoni, S.: Differential evolution based human body pose estimation from point clouds. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 1389–1396. ACM, New York (2013)Google Scholar
  11. 11.
    Oh, S.K., Kim, W.D., Pedrycz, W., et al.: Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution. Neurocomputing 78(1), 121–132 (2012)CrossRefGoogle Scholar
  12. 12.
    Okada, H.: Interval-valued differential evolution for evolving neural networks with interval weights and biases. In: IEEE Sixth International Workshop on Computational Intelligence and Applications (IWCIA), pp. 81–84. IEEE (2013)Google Scholar
  13. 13.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., et al.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  14. 14.
    Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Trans. Evol. Comput. 11(5), 561–578 (2007)CrossRefGoogle Scholar
  15. 15.
    Islam, S.M., Das, S., Ghosh, S., et al.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 482–500 (2012)CrossRefGoogle Scholar
  16. 16.
    Guo, Z., Cheng, B., Ye, M., et al.: A parallel chaos differential evolution algorithm. Hsi-An Chiao Tung Ta Hsueh/J. Xi’an. 41(3), 299–302 (2007)zbMATHGoogle Scholar
  17. 17.
    Weber, M.: Parallel global optimization: structuring populations in differential evolution. Stud. Comput. 121 (2010). ISBN: 978-951-39-4076-8Google Scholar
  18. 18.
    Wang, L., Lin, H.F., Teng, H.F.: Research on Parallel Cooperative Coevolutionary Differential Evolution Algorithm. Comput. Eng. 38(04), 182–184 (2012)Google Scholar
  19. 19.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential evolution–simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution-A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  23. 23.
    Mezura-Montes, E., Velzquez-Reyes, J., Coello Coello, C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 25–32. IEEE (2006)Google Scholar
  24. 24.
    Gmperle, R., Mller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 10, 293–298 (2002)Google Scholar
  25. 25.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–411 (2009)CrossRefGoogle Scholar
  26. 26.
    Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with explorative–exploitative population families. Genet. Program. Evol. Mach. 10(4), 343–371 (2009)CrossRefGoogle Scholar
  27. 27.
    Tsutsui, S.: Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: GECCO 1999, pp. 657–664 (1999)Google Scholar
  28. 28.
    Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Xiaoqi Peng
    • 1
  • Zhifeng Hao
    • 2
  • Han Huang
    • 3
    Email author
  • Hongyue Wu
    • 3
  • Fangqing Liu
    • 3
  1. 1.School of Applied MathematicsGuangdong University of TechnologyGuangzhouChina
  2. 2.School of Mathematics and Big DataFoshan UniversityFoshanChina
  3. 3.School of Software EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations