A New Optimal Neuro-Fuzzy Inference System for MR Image Classification and Multiple Scleroses Detection

  • Hakima Zouaoui
  • Abdelouahab Moussaoui
  • Abdelmalik Taleb-Ahmed
  • Mourad Oussalah
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 681)

Abstract

In the present article, we propose a new approach for the segmentation of the MR images of the Multiple Sclerosis (MS) which is an autoimmune inflammatory disease affecting the central nervous system. Our algorithm of segmentation is composed of three stages: segmentation of the brain into regions using the algorithm FCM (Fuzzy C-Means) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)), the elimination of the atypical data (outliers) of the white matter by the optimization algorithm PSOBC (Particle Swarm Optimization-Based image Clustering), finally, the use of a Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.

Keywords

Multiple sclerosis Magnetic resonance imaging Segmentation Fuzzy C-means Particle swarm optimization Fuzzy controller 

References

  1. 1.
    Miller, D.H.: Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRX 1(2), 284–294 (2004)CrossRefGoogle Scholar
  2. 2.
    Daniel, G.-L., Sylvain, P., Douglas, A., Louis, C., Christian, B.: Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. In: IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers (IEEE) Results and Discussion (2011)Google Scholar
  3. 3.
    Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, D., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20(8), 677–689 (2001)Google Scholar
  4. 4.
    Anbeek, P., Vinchen, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21, 1037–1044 (2004)Google Scholar
  5. 5.
    Souplet, J.C., Lebrun, C., Anyche, N., Malandain, G.: An automatic segmentation of T2-FLAIR multiple sclerosis lesions. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)Google Scholar
  6. 6.
    Dugas-Phocion, G., Gonzalez, M.A., Lebrun, C., Chanalet, S., Bensa, C., Malandain, G., Ayache, N.: Hierarchical segmentation of multiple sclerosis lesions multi-sequence MRI. In: ISBI08 (2008)Google Scholar
  7. 7.
    Garcia-Lorenzo, D., Prima, S., Morrissey, S.P., Barillot, C.: A robust expectation-maximization algorithm for multiple sclerosis lesion segmentation. Segmentation in the clinic: a grand challenge II: lesion segmentation (2008)Google Scholar
  8. 8.
    Prastawa, M., Guido, G.: Automatic MS lesion segmentation by outlier detection and information theoretic region partitioning. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)Google Scholar
  9. 9.
    Wu, Y., Warfield, S.K., Tan, I.L., Wessl III, W.M., Meier, D.S., Van Schijndel, R.A., Barkhof, F., Guttmann, C.: Automated segmentation of multiple sclerosis lesion subtype with multichannel MRI. NeuroImage 32, 1025–1215 (2006)Google Scholar
  10. 10.
    Tu, Z., Narr, K., Dinov, I., Dollar, P., Thompson, P., Toga, A.: Brain anatomical structure parsing by hybrid discriminative/generative models. IEEE TMI 27(4), 495–508 (2008)Google Scholar
  11. 11.
    Morra, J., Tu, Z., Toga, A., Thompson, P.: Automatic segmentation of MS lesions using a contextual model for the MICCAI grand challenge. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)Google Scholar
  12. 12.
    Anbeek, P., Vinchen K.L., Viergever, M.A.: Antomated MS-lesion segmentation by K-nearest neighbor classification. 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation (2008)Google Scholar
  13. 13.
    Bazin, P.-L., Pham, D.L.: Statistical and topological atlas based brain image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 94–101. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75757-3_12 CrossRefGoogle Scholar
  14. 14.
    Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy C-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Proc. 23, 1390–1400 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bezdek, J., Hall, I., Clarke, L.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)CrossRefGoogle Scholar
  16. 16.
    Ghosh, S., Kumar, S.: Comparative analysis of K-means and fuzzy C-means algorithms. Int. J. Adv. Comput. Sci. Appl. 4(4), 35–39 (2013)Google Scholar
  17. 17.
    Tejwant, S., Manish, M.: Performance comparison of fuzzy C means with respect to other clustering algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 89–93 (2014)Google Scholar
  18. 18.
    Bezdek, J.C.: Fuzzy mathematics in pattern classification. Ph.D. dissertation, Cornell University, Ithaca, NY (1973)Google Scholar
  19. 19.
    Zouaoui, H., Moussaoui, A.: Clustering par Fusion Floue de Donnes Appliqu la Segmentation dImages IRM Crbrales. CIIA, von CEUR Workshop Proceedings vol. 547. CEUR-WS.org (2009)Google Scholar
  20. 20.
    Premalatha, K., Natarajan, A.M.: A new approach for data clustering based on PSO with local search. Comput. Inform. Sci. 1(4), 139–145 (2008)Google Scholar
  21. 21.
    El Dor, A., Lepagnot, J., Nakib, A., Siarry, P.: PSO-2S optimization algorithm for brain MRI segmentation. In: Pan, J.S., Krömer, P., Snášel, V. (eds.) Genetic and Evolutionary Computing, pp. 13–22. Springer, Cham (2014)CrossRefGoogle Scholar
  22. 22.
    Selvi, V., Umarani, R.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. (0975–8887) 5(4), 1–6 (2010)Google Scholar
  23. 23.
    Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization, vol. 3, pp. 1945–1950 (1999)Google Scholar
  24. 24.
    Aït-Ali, L.S., Prima, S., Edan, G., Barillot, C.: Longitudinal segmentation of MS lesions in multimodal brain MRI. In: 15ème Congrès Francophone AFRIF/AFIA de Reconnaissance des Formes et Intelligence Artificielle (RFIA), Tours, France, Janvier (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Hakima Zouaoui
    • 1
  • Abdelouahab Moussaoui
    • 1
  • Abdelmalik Taleb-Ahmed
    • 2
  • Mourad Oussalah
    • 3
  1. 1.Computer Science DepartmentFerhat Abbas UniversitySétifAlgeria
  2. 2.LAMIH LaboratoryUniversity of ValenciennesValenciennesFrance
  3. 3.Centre for Ubiquitous ComputingUniversity of OuluOuluFinland

Personalised recommendations