Advertisement

Methods to Supplement the Mineral-Containing Proteins

  • Ting Zhou
Chapter

Abstract

It is well established that mineral supplementation is crucial for human being from the standpoint of nutrition. The mineral-containing proteins are not only essential food components, but also important carriers for these minerals in foodstuffs. This chapter mainly describes great progress in development of various methods in these mineral-containing proteins as mineral supplements, and effect of various factors on such supplementation.

Keywords

Mineral-containing proteins/peptides Mineral supplements Food factors Supplementation methods Food processing 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC31501810), the Hangzhou Science and Technology Planning Project (Specific Funds of Agricultural Scientific Research 20140432B02).

References

  1. 1.
    Deshpande JD, Joshi MM, Giri PA. Zinc: the trance element of major importance in human nutrition and health. Int J Med Sci Public Health. 2013;2:1–6.CrossRefGoogle Scholar
  2. 2.
    Miquel E, Farré R. Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci Technol. 2007;18:139–43.CrossRefGoogle Scholar
  3. 3.
    Guo L, Hou H, Li B, Zhang Z, Zhao X. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochem. 2013;48:988–93.CrossRefGoogle Scholar
  4. 4.
    Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 2012;135:1789–95.CrossRefGoogle Scholar
  5. 5.
    Wang C, Li B, Ao J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem. 2012;134:1231–8.CrossRefGoogle Scholar
  6. 6.
    Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT Food Sci Technol. 2008;41:1973–7.CrossRefGoogle Scholar
  7. 7.
    Xie NN, Huang JJ, Li B, Cheng JH, Wang ZC, Yin JF, Yan XM. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues. Food Chem. 2015;173:210–7.CrossRefGoogle Scholar
  8. 8.
    Hyder SM, Persson LA, Chowdhury AM, Ekstrom EC. Do side-effects reduce compliance to iron supplementation? A study of daily and weekly-dose regimens in pregnancy. J Health Popul Nutr. 2002;20:175–9.Google Scholar
  9. 9.
    Dewey KG, Domellöf M, Cohen RJ, Landa RL, Hernell O, Lönnerdal B. Iron supplementation affects growth and morbidity of breast-fed infants: results of a randomized trial in Sweden and Honduras. Br J Nutr. 2002;132:3249–55.Google Scholar
  10. 10.
    Theil EC. Iron, ferritin, and nutrition. Annu Rev Nutr. 2004;24:327–43.CrossRefGoogle Scholar
  11. 11.
    Zhao G. Plant ferritin and its implications for human health and nutrition. Biochim Biophys Acta. 1800;2010:815–23.Google Scholar
  12. 12.
    Chen K, Zhang L, Li H, Zhang Y, Xie H, Shang J, Tian WZ, Yang P, Chai LY. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31:304–9.CrossRefGoogle Scholar
  13. 13.
    Saini RK, Nile SH, Keum YS. Food science and technology for management of iron deficiency in humans: a review. Trends Food Sci Technol. 2016;53:13–22.CrossRefGoogle Scholar
  14. 14.
    Hurrell R. How to ensure adequate iron absorption from iron-fortified food. Nutr Rev. 2002;60:7–15.CrossRefGoogle Scholar
  15. 15.
    Wang C, Li B, Wang B, Xie NN. Degradation and antioxidant activities of peptides and zinc–peptide complexes during in vitro gastrointestinal digestion. Food Chem. 2015;173:733–40.CrossRefGoogle Scholar
  16. 16.
    Liu KL, Chen FS, Zhao Y, Gu ZX, Yang HS. Selenium accumulation in protein fractions during germination of Se-enriched brown rice and molecular weights distribution of Se-containing proteins. Food Chem. 2011;127:1526–31.CrossRefGoogle Scholar
  17. 17.
    Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2016;3:1–8.Google Scholar
  18. 18.
    Poblaciones MJ, Rodrigo SM, Santamaría O. Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol Trace Elem Res. 2013;151:132–7.CrossRefGoogle Scholar
  19. 19.
    Hu QH, Xu J, Pang GX. Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J Agric Food Chem. 2003;51:3379–81.CrossRefGoogle Scholar
  20. 20.
    Stibilj V, Kreft I, Smrkolj P, Osvald J. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilization. Eur Food Res Technol. 2004;219:142–4.CrossRefGoogle Scholar
  21. 21.
    Zhao L, Zhao GH, Zhao ZD, Chen P, Tong JY, Hu XS. Selenium distribution in a Se-enriched mushroom species of the genus Ganoderma. J Agric Food Chem. 2004;52:3954–9.CrossRefGoogle Scholar
  22. 22.
    Tie M, Li BR, Liu Y, Han J, Sun TB, Li HW. HPLC-ICP-MS analysis of selenium speciation in selenium-enriched Cordyceps militaris. RSC Adv. 2014;4:62071–5.Google Scholar
  23. 23.
    Perales S, Barberá R, Lagarda MJ, Farré R. Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc. J Agric Food Chem. 2006;54:4901–6.CrossRefGoogle Scholar
  24. 24.
    Weaver CM, Janle E, Martin B, Browne S, Guiden H, Lachcik P, Lee WH. Dairy versus calcium carbonate in promoting peak bone mass and bone maintenance during subsequent calcium deficiency. J Bone Miner Res. 2009;24:1411–9.CrossRefGoogle Scholar
  25. 25.
    Canabady-Rochelle LS, Mellema M. Physical–chemical comparison of cow’s milk proteins versus soy proteins in their calcium-binding capacities. Colloids Surf A Physicochem Eng Asp. 2010;366:110–2.CrossRefGoogle Scholar
  26. 26.
    Yu YD, Zhang MD, Liu SY, Wang LY, Liu JB, Jones G, Huang H. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate. Int J Biol Macromol. 2013;58:253–7.CrossRefGoogle Scholar
  27. 27.
    Lönnerdal B. Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr. 2009;89:1680–5.CrossRefGoogle Scholar
  28. 28.
    San Martin CD, Garri C, Pizarro F, Walter T, Theil EC, Núñez MT. Caco-2 intestinal epithelial cells absorb soybean ferritin by μ2 subunit (AP2)-dependent endocytosis. J Nutr. 2008;138:659–66.Google Scholar
  29. 29.
    Murray-Kolb LE, Welch R, Theil EC, Beard JL. Women with low iron stores absorb iron from soybeans. Am J Clin Nutr. 2003;77:180–4.Google Scholar
  30. 30.
    Lukac RJ, Aluru MR, Reddy MB. Quantification of ferritin from staple food crops. J Agric Food Chem. 2009;57:2155–61.CrossRefGoogle Scholar
  31. 31.
    Li C, Hu X, Zhao G. Two different H-type subunits from pea seed (Pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie. 2009;91:230–9.CrossRefGoogle Scholar
  32. 32.
    Masuda T, Goto F, Yoshihara T. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J Biol Chem. 2001;276:19575–9.CrossRefGoogle Scholar
  33. 33.
    Deng JJ, Li ML, Zhang T, Chen B, Leng XJ, Zhao GH. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Res Int. 2011;44:33–8.CrossRefGoogle Scholar
  34. 34.
    Lv CY, Zhao GH, Lönnerdal B. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem. 2015;26:532–40.CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009;33:1–8.CrossRefGoogle Scholar
  36. 36.
    Steijns JM. Milk ingredients as nutraceuticals. Int J Dairy Technol. 2001;54:81–8.CrossRefGoogle Scholar
  37. 37.
    Hu F, Pan F, Sawano Y, Makino T, Kakehi Y, Komiyama M. Studies of the structure of multiferric ion-bound lactoferrin: a new antianemic edible material. Int Dairy J. 2008;18:1051–6.CrossRefGoogle Scholar
  38. 38.
    Ueno HM, Ueda N, Morita M, Kakehi YJ, Kobayashi T. Thermal stability of the iron-lactoferrin complex in aqueous solution is improved by soluble soybean polysaccharide. Food Biophys. 2012;7:183–9.CrossRefGoogle Scholar
  39. 39.
    Farnaud S, Evans RW. Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol. 2003;40:395–405.CrossRefGoogle Scholar
  40. 40.
    Hernell O, Lonnerdal B. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr. 2002;76:858–64.Google Scholar
  41. 41.
    Paesano R, Berlutti F, Pietropaoli M, Goolsbee W, Pacifici E, Valenti P. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. Int J Immunopathol Pharmacol. 2010;23:577–87.CrossRefGoogle Scholar
  42. 42.
    King JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr. 2007;44:245–51.CrossRefGoogle Scholar
  43. 43.
    Chen GY, Chen TX, Chen HJ, He ZJ, Wu SM. Effect of lactoferrin fortified formula on infant growth and development and the accounts of peripheral blood cells. Postgrad Med J. 2011;34:52–6.Google Scholar
  44. 44.
    Wakabayashi H, Yamauchi K, Takase M. Lactoferrin research, technology and applications. Int Dairy J. 2006;16:1241–51.CrossRefGoogle Scholar
  45. 45.
    Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K. Twenty-five years of research on bovine lactoferrin applications. Biochimie. 2009;91:52–7.CrossRefGoogle Scholar
  46. 46.
    Valenti P, Vogel HJ. Lactoferrin, all roads lead to Rome. Biometals. 2014;27:803–6.CrossRefGoogle Scholar
  47. 47.
    Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90:233–44.CrossRefGoogle Scholar
  48. 48.
    Wang X, Zhou J, Tong PS, Mao XY. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate–zinc complexes. Dairy Sci. 2010;94:2731–40.CrossRefGoogle Scholar
  49. 49.
    Chen D, Liu ZY, Huang WQ, Zhao YH, Dong SY, Zeng MY. Purification and characterization of a zinc-binding peptide from oyster protein hydrolysate. J Funct Foods. 2013;5:689–97.CrossRefGoogle Scholar
  50. 50.
    Zhu KX, Wang XP, Guo XN. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. J Funct Foods. 2015;12:23–32.CrossRefGoogle Scholar
  51. 51.
    Guo LD, Harnedy PA, O’Keeffe MB, Zhang L, Li BF, Hou H, FitzGerald RJ. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chem. 2015;173:536–42.CrossRefGoogle Scholar
  52. 52.
    Silva SV, Malcata FX. Caseins as source of bioactive peptides. Int Dairy J. 2005;15:1–15.CrossRefGoogle Scholar
  53. 53.
    Guo LD, Harnedy PA, Li BF, Hou H, Zhang ZH, Zhao X, FitzGerald RJ. Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci Technol. 2014;37:92–105.CrossRefGoogle Scholar
  54. 54.
    Choi I, Jung C, Choi H, Kim C, Ha H. Effectiveness of phosvitin peptides on enhancing bioavailability of calcium and its accumulation in bones. Food Chem. 2005;93:577–83.CrossRefGoogle Scholar
  55. 55.
    Cruz-Huerta E, Garcia-Nebot MJ, Miralles B, Amigo L. Caseinophosphopeptides released after tryptic hydrolysis versus simulated gastrointestinal digestion of a casein-derived by-product. Food Chem. 2015;168:648–55.CrossRefGoogle Scholar
  56. 56.
    Zhao LN, Huang QM, Huang SL, Lin JP, Wang SY, Huang YF, Hong J, Rao PF. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. Am Chem Soc. 2014;62:10274–82.Google Scholar
  57. 57.
    Chen D, Mu XM, Huang H, Nie RY, Liu ZY, Zeng MY. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J Funct Foods. 2014;6:575–84.CrossRefGoogle Scholar
  58. 58.
    Zhang S, Rocourt C, Cheng WH. Selenoproteins and the aging brain. Mech Ageing Dev. 2010;131:253–60.CrossRefGoogle Scholar
  59. 59.
    Thiry C, Schneider YJ, Pussemier L, Temmerman LD, Ruttens A. Selenium bioaccessibility and bioavailability in Se-enriched food supplements. Biol Trace Elem Res. 2013;152:152–60.CrossRefGoogle Scholar
  60. 60.
    Metanis N, Hilvert D. Natural and synthetic selenoproteins. Curr Opin Chem Biol. 2014;22:27–34.CrossRefGoogle Scholar
  61. 61.
    Liu KL, Cao XH, Bai QY, Wen HB, Gu ZX. Relationships between physical properties of brown rice and degree of milling and loss of selenium. J Food Eng. 2009;94:69–74.CrossRefGoogle Scholar
  62. 62.
    Seppänen MM, Kontturi J, Heras IL, Madrid Y, Cámara C, Hartikainen H. Agronomic biofortification of Brassica with selenium—enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil. 2010;337:273–83.CrossRefGoogle Scholar
  63. 63.
    Dong JZ, Ding J, Yu PZ, Lei C, Zheng XJ, Wang Y. Composition and distribution of the main active components in selenium-enriched fruit bodies of Cordyceps militaris link. Food Chem. 2013;137:164–7.CrossRefGoogle Scholar
  64. 64.
    Tie M, Gao Y, Xue YL, Zhang AN, Yao Y, Sun JF, Xue S. Determination of selenium species and analysis of methyl-seleno-L-cysteine in Se-enriched mung bean sprouts by HPLC-MS. Anal Methods. 2016;8:3102–8.CrossRefGoogle Scholar
  65. 65.
    Fagan S, Owens R, Ward P, Connolly C, Doyle S, Murphy R. Biochemical comparison of commercial selenium yeast preparations. Biol Trace Elem Res. 2015;166:245–59.CrossRefGoogle Scholar
  66. 66.
    Pophaly SD, Poonam, Singh P, Kumar H, Tomar SK, Singh R. Selenium enrichment of lactic acid bacteria and bifidobacteria: a functional food perspective. Trends Food Sci Technol. 2014;39:135–45.CrossRefGoogle Scholar
  67. 67.
    Li ML, Zhang T, Yang HX, Zhao GH, Xu CS. A novel calcium supplement prepared by plant ferritin nanocages protects against absorption inhibitors through a unique pathway. Bone. 2014;64:115–23.CrossRefGoogle Scholar
  68. 68.
    Deng JJ, Cheng JJ, Liao XY, Zhang T, Leng XJ, Zhao GH. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. J Agric Food Chem. 2010;58:635–41.CrossRefGoogle Scholar
  69. 69.
    Yun SJ, Zhang T, Li ML, Chen B, Zhao GH. Proanthocyanidins inhibit iron absorption from soybean (Glycine max) seed ferritin in rats with iron deficiency anemia. Plant Foods Hum Nutr. 2011;66:212–7.CrossRefGoogle Scholar
  70. 70.
    Li ML, Jia XL, Yang JY, Deng JJ, Zhao GH. Effect of tannic acid on properties of soybean (Glycine max) seed ferritin: a model for interaction between naturally-occurring components in foodstuffs. Food Chem. 2012;133:410–5.CrossRefGoogle Scholar
  71. 71.
    Wang QQ, Zhou K, Ning Y, Zhao GH. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food Chem. 2016;213:260–7.CrossRefGoogle Scholar
  72. 72.
    Wang A, Zhou K, Qi X, Zhao GH. Plant ferritin association induced by EGCG inhibits protein degradation by proteases. Plant Foods Hum Nutr. 2014;69:386–91.CrossRefGoogle Scholar
  73. 73.
    Lv CY, Bai YF, Yang SP, Zhao GH, Chen B. NADH induces iron release from pea seed ferritin: a model for interaction between coenzyme and protein components in foodstuffs. Food Chem. 2013;141:3851–8.CrossRefGoogle Scholar
  74. 74.
    García-Nebot MJ, Barberá R, Alegría A. Iron and zinc bioavailability in Caco-2 cells: influence of caseinophosphopeptides. Food Chem. 2013;138:1298–303.CrossRefGoogle Scholar
  75. 75.
    Bokkhim H, Bansal N, Grøndahl L, Bhandari B. Physico-chemical properties of different forms of bovine lactoferrin. Food Chem. 2013;141:3007–13.CrossRefGoogle Scholar
  76. 76.
    Conesa C, Sanchez L, Rota C, Perez MD, Calvo M, Farnaud S. Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp Biochem Physiol B Biochem Mol Biol. 2008;150:131–9.CrossRefGoogle Scholar
  77. 77.
    Kussendrager K. Effects of heat treatment on structure and iron-binding capacity of bovine lactoferrin. In: Indigenous antimicrobial agents of milk. IDF Bull. 1994;133–46.Google Scholar
  78. 78.
    Lesmes U, Sandra S, Decker EA, McClements DJ. Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilized by caseinate. Food Chem. 2010;123:99–106.CrossRefGoogle Scholar
  79. 79.
    Nie R. Study on the stability of fish scale peptide-calcium complex and effects of food components on the calcium absorption. Master dissertation. Ocean University of China 2014, p. 21–24.Google Scholar
  80. 80.
    Kieliszek M, Błażejak S. Selenium: significance, and outlook for supplementation. Nutrition. 2013;29:713–8.CrossRefGoogle Scholar
  81. 81.
    Wu WB, Long XJ. Correlation of dispersibility of proteins with that of Selenium in teas. Biol Trace Elem Res. 2011;142:137–42.Google Scholar
  82. 82.
    La Frano MR, de Moura FF, Boy E, Lonnerdal B, Burri BJ. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr Rev. 2014;72:289–307.CrossRefGoogle Scholar
  83. 83.
    Keren N, Aurora R, Pakrasi HB. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 2004;135:1666–73.CrossRefGoogle Scholar
  84. 84.
    Masuda T, Yamamoto A, Toyohara H. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis. Biosci Biotechnol Biochem. 2015;1:74–81.CrossRefGoogle Scholar
  85. 85.
    Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci. 2013;4:1–12.CrossRefGoogle Scholar
  86. 86.
    Zhang T, Chen Y, Yun SJ, Liao XY, Zhao GH, Leng XJ. Effect of high hydrostatic pressure (HHP) on structure and activity of plant ferritin. Food Chem. 2012;130:273–8.CrossRefGoogle Scholar
  87. 87.
    Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice. 2013;6:31–6.CrossRefGoogle Scholar
  88. 88.
    Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol Report. 2005;59:869–80.CrossRefGoogle Scholar
  89. 89.
    Paul S, Ali N, Datta SK, Datta K. Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. Plant Foods Hum Nutr. 2014;69:203–8.CrossRefGoogle Scholar
  90. 90.
    Chen H, Zhang S, Xu C, Zhao G. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions. Chem Commun. 2016;52:7402–5.CrossRefGoogle Scholar
  91. 91.
    Nuijens JH, Van B, Schanbacher FL. Structure and biological actions of lactoferrin. J Mammary Gland Biol Neoplasia. 1996;1:285–95.CrossRefGoogle Scholar
  92. 92.
    Teepakorn C, Fiaty K, Charcosset C. Optimization of lactoferrin and bovine serum albumin separation using ion-exchange membrane chromatography. Sep Purif Technol. 2015;151:292–302.CrossRefGoogle Scholar
  93. 93.
    Cooper CA, Maga EA, Murray JD. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Res. 2015;24:605–14.CrossRefGoogle Scholar
  94. 94.
    Ding WK, Shah NP. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci. 2007;72:446–50.CrossRefGoogle Scholar
  95. 95.
    Balcãoa VM, Costa CI, Matos CM, Moutinho CG, Amorim M, Pintado ME, Gomes AP, Vila MM, Teixeira JA. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013;32:425–31.CrossRefGoogle Scholar
  96. 96.
    Liu F, Wang D, Sun C, Gao Y. Influence of polysaccharides on the physicochemical properties of lactoferrin–polyphenol conjugates coated β-carotene emulsions. Food Hydrocoll. 2016;52:661–9.CrossRefGoogle Scholar
  97. 97.
    Bokkhim H, Bansal N, Grondahl L, Bhandari B. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocoll. 2016;52:231–42.CrossRefGoogle Scholar
  98. 98.
    Li SN, Liu F, Niu FG, Gu LP, Su YJ, Yang YJ. Purification of phosvitin phosphopeptides using macro-mesoporous TiO2. RSC Adv. 2015;5:64731–8.CrossRefGoogle Scholar
  99. 99.
    Niedzielski P, Mleczek M, Siwulski M, Rzymski P, Ga M, Kozak L. Supplementation of cultivated mushroom species with selenium: bioaccumulation and speciation study. Eur Food Res Technol. 2015;241:419–26.CrossRefGoogle Scholar
  100. 100.
    Lin ZH, Wang CR. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater Chem Phys. 2005;92:591–4.CrossRefGoogle Scholar
  101. 101.
    Niu YF, Guin JP, Chassagnon R, Smektala F, Abdelouas A, Rouxel T, Troles J. Selenium nanoparticles synthesized via a facile hydrothermal method. Adv Mater Res. 2012;535:289–92.CrossRefGoogle Scholar
  102. 102.
    Zeng K, Chen SG, Song YD, Li HB, Li FJ, Liu P. Solvothermal synthesis of trigonal selenium with butterfly-like microstructure. Particuology. 2013;11:614–7.CrossRefGoogle Scholar
  103. 103.
    Panahi-Kalamuei M, Mousavi-Kamazani M, Salavati-Niasari M, Hosseinpour-Mashkani SM. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason Sonochem. 2015;23:246–56.CrossRefGoogle Scholar
  104. 104.
    Zhang B, Dai W, Ye XC, Zuo F, Xie Y. Photothermally assisted solution phase synthesis of microscale tubes, rods, shuttles, and an urchin-like assembly of single-crystalline trigonal selenium. Angew Chem Int Ed. 2006;45:2481–639.CrossRefGoogle Scholar
  105. 105.
    Quintana M, Haro-Poniatowski E, Morales J, Batina N. Synthesis of selenium nanoparticles by pulsed laser ablation. Appl Surf Sci. 2002;195:175–86.CrossRefGoogle Scholar
  106. 106.
    Zhu JJ, Palchik O, Chen SG, Gedanken A. Microwave assisted preparation of CdSe, PbSe, and Cu2−xSe nanoparticles. J Phys Chem B. 2000;104:7344–7.CrossRefGoogle Scholar
  107. 107.
    Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol. 2010;41:461–6.CrossRefGoogle Scholar
  108. 108.
    Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88:196–201.CrossRefGoogle Scholar
  109. 109.
    Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci Technol. 2012;71:11–24.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental ScienceHangzhou Normal UniversityHangzhouChina

Personalised recommendations