Advertisement

Static Magnetic Fields (SMFs) on Human Bodies

  • Xin Zhang
  • Kevin Yarema
  • An Xu
Chapter

Abstract

This chapter summarizes the effects of static magnetic fields (SMFs) on human bodies. Some commonly seen SMFs, such as the weak earth magnetic field that we are all exposed to, moderate to ultra-high field magnetic resonance imaging (MRI) in the hospitals and research institutes, as well as SMF-based magnetic therapies, which have a long history but still lack of solid explanation or sufficient experimentation from a scientific point of view. Magnetobiology and biomagnetism are also briefly discussed.

Keywords

Static magnetic fields Earth magnetic field Magnetic resonance imaging (MRI) Magnetic therapy 

References

  1. Adair RK. Static and low-frequency magnetic field effects: health risks and therapies. Rep Prog Phys. 2000;63(3):415–54.CrossRefGoogle Scholar
  2. Alfano AP, Taylor AG, Foresman PA, Dunkl PR, McConnell GG, Conaway MR, Gillies GT. Static magnetic fields for treatment of fibromyalgia: a randomized controlled trial. J Altern Complement Med. 2001;7(1):53–64.CrossRefPubMedGoogle Scholar
  3. Basford JR. A historical perspective of the popular use of electric and magnetic therapy. Arch Phys Med Rehabil. 2001;82(9):1261–9.CrossRefPubMedGoogle Scholar
  4. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG. Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A. 2011;108(40):16783–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown CS, Ling FW, Wan JY, Pilla AA. Efficacy of static magnetic field therapy in chronic pelvic pain: a double-blind pilot study. Am J Obstet Gynecol. 2002;187(6):1581–7.CrossRefPubMedGoogle Scholar
  6. Burch JB, Reif JS, Yost MG. Geomagnetic activity and human melatonin metabolite excretion. Neurosci Lett. 2008;438(1):76–9.CrossRefPubMedGoogle Scholar
  7. Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science. 1968;161(3843):784–6.CrossRefPubMedGoogle Scholar
  8. Cohen D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science. 1972;175(4022):664–6.CrossRefPubMedGoogle Scholar
  9. Cohen D, Palti Y, Cuffin BN, Schmid SJ. Magnetic fields produced by steady currents in the body. Proc Natl Acad Sci U S A. 1980;77(3):1447–51.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Colbert AP, Markov MS, Souder JS. Static magnetic field therapy: dosimetry considerations. J Altern Complement Med. 2008;14(5):577–82.CrossRefPubMedGoogle Scholar
  11. Colbert AP, Wahbeh H, Harling N, Connelly E, Schiffke HC, Forsten C, Gregory WL, Markov MS, Souder JJ, Elmer P, King V. Static magnetic field therapy: a critical review of treatment parameters. Evid Based Complement Alternat Med. 2009;6(2):133–9.CrossRefPubMedGoogle Scholar
  12. Davies AM, Weinberg U, Palti Y. Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci. 2013;1291:86–95.CrossRefPubMedGoogle Scholar
  13. De Luka SR, Ilic AZ, Jankovic S, Djordjevich DM, Cirkovic S, Milovanovich ID, Stefanovic S, Veskovic-Moracanin S, Ristic-Djurovic JL, Trbovich AM. Subchronic exposure to static magnetic field differently affects zinc and copper content in murine organs. Int J Radiat Biol. 2016;92(3):140–7.CrossRefPubMedGoogle Scholar
  14. Durmus NG, Tekin HC, Guven S, Sridhar K, Arslan Yildiz A, Calibasi G, Ghiran I, Davis RW, Steinmetz LM, Demirci U. Magnetic levitation of single cells. Proc Natl Acad Sci U S A. 2015;112(28):E3661–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Feychting M. Health effects of static magnetic fields – a review of the epidemiological evidence. Prog Biophys Mol Biol. 2005;87(2–3):241–6.CrossRefPubMedGoogle Scholar
  16. Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun. 2011;2:356.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gaffey CT, Tenforde TS. Bioelectric properties of frog sciatic nerves during exposure to stationary magnetic fields. Radiat Environ Biophys. 1983;22(1):61–73.CrossRefPubMedGoogle Scholar
  18. Gyires K, Zadori ZS, Racz B, Laszlo J. Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse. Bioelectromagnetics. 2008;29(6):456–62.CrossRefPubMedGoogle Scholar
  19. Hall EL, Robson SE, Morris PG, Brookes MJ. The relationship between MEG and fMRI. NeuroImage. 2014;102:80–91.CrossRefPubMedGoogle Scholar
  20. Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65(2):413–97.CrossRefGoogle Scholar
  21. Hart V, Novakova P, Malkemper EP, Begall S, Hanzal V, Jezek M, Kusta T, Nemcova V, Adamkova J, Benediktova K, Cerveny J, Burda H. Dogs are sensitive to small variations of the Earth’s magnetic field. Front Zool. 2013;10(1):80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. He B, Yang L, Wilke C, Yuan H. Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng. 2011;58(7):1918–31.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hsieh CH, Lee MC, Tsai-Wu JJ, Chen MH, Lee HS, Chiang H, Herbert Wu CH, Jiang CC. Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil. 2008;16(3):343–51.CrossRefPubMedGoogle Scholar
  24. Hunold A, Funke ME, Eichardt R, Stenroos M, Haueisen J. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth. Physiol Meas. 2016;37(7):1146–62.CrossRefPubMedGoogle Scholar
  25. Johnsen S, Lohmann KJ. Magnetoreception in animals. Phys Today. 2008;61(3):29–35.CrossRefGoogle Scholar
  26. Juhasz M, Nagy VL, Szekely H, Kocsis D, Tulassay Z, Laszlo JF. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study. J R Soc Interface. 2014;11(98):20140601.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kandori A, Ogata K, Miyashita T, Takaki H, Kanzaki H, Hashimoto S, Shimizu W, Kamakura S, Watanabe S, Aonuma K. Subtraction magnetocardiogram for detecting coronary heart disease. Ann Noninvasive Electrocardiol. 2010;15(4):360–8.CrossRefPubMedGoogle Scholar
  28. Kangarlu A, Burgess RE, Zhu H, Nakayama T, Hamlin RL, Abduljalil AM, Robitaille PM. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging. 1999;17(10):1407–16.CrossRefPubMedGoogle Scholar
  29. Kida T, Tanaka E, Kakigi R. Multi-dimensional dynamics of human electromagnetic brain activity. Front Hum Neurosci. 2015;9:713.PubMedGoogle Scholar
  30. Kim D, Joo EY, Seo DW, Kim MY, Lee YH, Kwon HC, Kim JM, Hong SB. Accuracy of MEG in localizing irritative zone and seizure onset zone: quantitative comparison between MEG and intracranial EEG. Epilepsy Res. 2016;127:291–301.CrossRefPubMedGoogle Scholar
  31. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95.CrossRefPubMedGoogle Scholar
  32. Kiss B, Gyires K, Kellermayer M, Laszlo JF. Lateral gradients significantly enhance static magnetic field-induced inhibition of pain responses in mice—a double blind experimental study. Bioelectromagnetics. 2013;34(5):385–96.CrossRefPubMedGoogle Scholar
  33. Kovacs-Balint Z, Csatho A, Laszlo JF, Juhasz P, Hernadi I. Exposure to an inhomogeneous static magnetic field increases thermal pain threshold in healthy human volunteers. Bioelectromagnetics. 2011;32(2):131–9.CrossRefPubMedGoogle Scholar
  34. Laszlo J, Gyires K. 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sci. 2009;84(1–2):12–7.CrossRefPubMedGoogle Scholar
  35. Lipnicki DM. An association between geomagnetic activity and dream bizarreness. Med Hypotheses. 2009;73(1):115–7.CrossRefPubMedGoogle Scholar
  36. Lohmann KJ, Johnsen S. The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci. 2000;23(4):153–9.CrossRefPubMedGoogle Scholar
  37. Martino CF, Castello PR. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS One. 2011;6(8):e22753.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Milovanovich ID, Cirkovic S, De Luka SR, Djordjevich DM, Ilic AZ, Popovic T, Arsic A, Obradovic DD, Opric D, Ristic-Djurovic JL, Trbovich AM. Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice. Environ Sci Pollut Res Int. 2016;23(2):1584–97.CrossRefPubMedGoogle Scholar
  39. Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol. 2005;87(2–3):213–23.CrossRefPubMedGoogle Scholar
  40. Mo WC, Liu Y, Cooper HM, He RQ. Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics. 2012;33(3):238–46.CrossRefPubMedGoogle Scholar
  41. Mo WC, Zhang ZJ, Liu Y, Bartlett PF, He RQ. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression. PLoS One. 2013;8(1):e54775.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mo W, Liu Y, Bartlett PF, He R. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field. Sci China Life Sci. 2014;57(4):448–61.CrossRefPubMedGoogle Scholar
  43. Mo WC, Zhang ZJ, Wang DL, Liu Y, Bartlett PF, He RQ. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci Rep. 2016;6:22624.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Okano H, Ino H, Osawa Y, Osuga T, Tatsuoka H. The effects of moderate-intensity gradient static magnetic fields on nerve conduction. Bioelectromagnetics. 2012;33(6):518–26.CrossRefPubMedGoogle Scholar
  45. O’Neill GC, Barratt EL, Hunt BA, Tewarie PK, Brookes MJ. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods. Phys Med Biol. 2015;60(21):R271–95.CrossRefPubMedGoogle Scholar
  46. Pang EW, Snead OC. From structure to circuits: the contribution of MEG connectivity studies to functional neurosurgery. Front Neuroanat. 2016;10Google Scholar
  47. Pittau F, Vulliemoz S. Functional brain networks in epilepsy: recent advances in noninvasive mapping. Curr Opin Neurol. 2015;28(4):338–43.CrossRefPubMedGoogle Scholar
  48. Pizzella V, Marzetti L, Della Penna S, de Pasquale F, Zappasodi F, Romani GL. Magnetoencephalography in the study of brain dynamics. Funct Neurol. 2014;29(4):241–53.PubMedPubMedCentralGoogle Scholar
  49. Pless M, Weinberg U. Tumor treating fields: concept, evidence and future. Expert Opin Investig Drugs. 2011;20(8):1099–106.CrossRefPubMedGoogle Scholar
  50. Rankin CH, Lin CH. Finding a worm’s internal compass. Elife. 2015;4:e09666.CrossRefPubMedCentralGoogle Scholar
  51. Richmond SJ, Gunadasa S, Bland M, Macpherson H. Copper bracelets and magnetic wrist straps for rheumatoid arthritis—analgesic and anti-inflammatory effects: a randomised double-blind placebo controlled crossover trial. PLoS One. 2013;8(9):e71529.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sammet S. Magnetic resonance safety. Abdom Radiol (NY). 2016;41(3):444–51.CrossRefGoogle Scholar
  53. Sastre A, Graham C, Cook MR, Gerkovich MM, Gailey P. Human EEG responses to controlled alterations of the Earth’s magnetic field. Clin Neurophysiol. 2002;113(9):1382–90.CrossRefPubMedGoogle Scholar
  54. Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000;12(1):2–19.CrossRefPubMedGoogle Scholar
  55. Schepkin VD, Brey WW, Gor’kov PL, Grant SC. Initial in vivo rodent sodium and proton MR imaging at 21.1 T. Magn Reson Imaging. 2010;28(3):400–7.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schiffer IB, Schreiber WG, Graf R, Schreiber EM, Jung D, Rose DM, Hehn M, Gebhard S, Sagemuller J, Spiess HW, Oesch F, Thelen M, Hengstler JG. No influence of magnetic fields on cell cycle progression using conditions relevant for patients during MRI. Bioelectromagnetics. 2003;24(4):241–50.CrossRefPubMedGoogle Scholar
  57. Stefan H, Trinka E. Magnetoencephalography (MEG): past, current and future perspectives for improved differentiation and treatment of epilepsies. Seizure: Eur J Epilepsy. 2016;44:121–4.CrossRefGoogle Scholar
  58. Tenforde TS. Magnetically induced electric fields and currents in the circulatory system. Prog Biophys Mol Biol. 2005;87(2–3):279–88.CrossRefPubMedGoogle Scholar
  59. Thoss F, Bartsch B. The human visual threshold depends on direction and strength of a weak magnetic field. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(10):777–9.CrossRefPubMedGoogle Scholar
  60. Thoss F, Bartsch B. The geomagnetic field influences the sensitivity of our eyes. Vis Res. 2007;47(8):1036–41.CrossRefPubMedGoogle Scholar
  61. Valentinuzzi ME. Magnetobiology: a historical view. IEEE Eng Med Biol Mag. 2004;23(3):85–94.CrossRefPubMedGoogle Scholar
  62. Vallbona C, Hazlewood CF, Jurida G. Response of pain to static magnetic fields in postpolio patients: a double-blind pilot study. Arch Phys Med Rehabil. 1997;78(11):1200–3.CrossRefPubMedGoogle Scholar
  63. Vergallo C, Dini L, Szamosvolgyi Z, Tenuzzo BA, Carata E, Panzarini E, Laszlo JF. In vitro analysis of the anti-inflammatory effect of inhomogeneous static magnetic field-exposure on human macrophages and lymphocytes. PLoS One. 2013;8(8):e72374.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife. 2015;4:e07493.CrossRefPubMedCentralGoogle Scholar
  65. Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191(8):675–93.CrossRefPubMedGoogle Scholar
  66. Wu YH, Gu JQ, Chen T, Wang WY, Jiang SQ, Quan WW Noninvasive diagnosis of coronary artery disease using two parameters extracted in an extrema circle of magnetocardiogram. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Embc). 2013; 1843–1846Google Scholar
  67. Yamaguchi-Sekino S, Sekino M, Ueno S. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn Reson Med Sci. 2011;10(1):1–10.CrossRefPubMedGoogle Scholar
  68. Zhang L, Yang XX, Liu JJ, Luo Y, Li ZY, Ji XM, Wang WC, Zhang X. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci Bull. 2015;60(24):2120–8.CrossRefGoogle Scholar
  69. Zimmerman JE, Thiene P, Harding JT. Design and operation of stable Rf-biased superconducting point-contact quantum devices, and a note on properties of perfectly clean metal contacts. J Appl Phys. 1970;41(4):1572–80.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Xin Zhang
    • 1
  • Kevin Yarema
    • 2
  • An Xu
    • 3
  1. 1.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiChina
  2. 2.School of MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Institute of Technical biology and Agriculture EngineeringHefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina

Personalised recommendations