Malignant Tumors of the Liver and Intrahepatic Bile Ducts

  • Wen-Ming Cong
  • Hui Dong
  • Yu-Yao Zhu
  • Zhen Zhu


It has been estimated that there are about 748,3000 cases of newly diagnosed liver cancer worldwide with a mortality of 695,900 cases each year. More than 80% of hepatocellular carcinoma (HCC) is discovered in sub-Saharan Africa or Asia, while the Western countries have a lower incidence. For example, the annual incidence rate of HCC in the United States is (1.5–4.9)/100,000 people. And according to the prediction by American Cancer Society, the new cases of liver cancer would reach 28,720, with 20,550 deaths in 2013, but it did not belong to the top ten malignant tumors with high incidence. In our country, the annual incidence of liver cancer was 25.7/100,000, and the mortality rate was 23.7/100,000, ranking the third and second the incidence and mortality of malignant tumor, respectively. Among 40,656 cases of hepatobiliary tumor diagnosed in the Department of Pathology, Eastern Hepatobiliary Surgery Hospital (EHBH),the Second Military Medical University during the past 30 years, malignant hepatic tumors account for 80% of all the cases, and the top two are HCC (86%) and intrahepatic cholangiocarcinoma (ICC, 8%). The number of surgical cases of both cancers is still increasing (Fig. 7.1), suggesting the high incidence of liver cancers in our country [1, 2, 3]
Fig. 7.1

The proportion of surgical resected HCC/ICC in the EHBH over the 30 years


  1. 1.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Theise ND, Park YN, Curado MP, et al. Tumours of the liver and intrahepatic bile ducts. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Geneva: WHO Press; 2010. p. 195–261.Google Scholar
  5. 5.
    Cong WM, Dong H, Tan L, et al. Surgicopathological classification of hepatic space-occupying lesions: a single-center experience with literature review. World J Gastroenterol. 2011;17(19):2372–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang T, Zhang J, You X, et al. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology. 2012;56(6):2051–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu H, Xu L, He H, et al. Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein. Cancer Sci. 2012;103(12):2072–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Jiang YF, He B, Li NP, et al. The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-kappa B pathways. Cell Biol Int. 2011;35(12):1225–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Wurmbach E, Chen YB, Khitrov G, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45(4):938–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng D, Zhao L, Zhang L, et al. p53 controls hepatitis C virus non-structural protein 5A-mediated downregulation of GADD45 alpha expression via the NF-kappa B and PI3K-Akt pathways. J Gen Virol. 2013;94(Pt 2):326–35.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang J, Liu XM. Assessment of dietary aflatoxins exposure in chinese residents. Chin J Food Hyg. 2007;19(3):238–40.Google Scholar
  12. 12.
    Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56(6):1384–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Jia D, Wei L, Guo W, et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology. 2011;54(4):1227–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Li M, Zhao H, Zhang X, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43(9):828–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kan Z, Zheng H, Liu X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23(9):1422–33.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Liu L, Dai Y, Chen J, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3beta/Snail signaling. Hepatology. 2014;59(2):531–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanai T, Hirohashi S, Upton MP, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer. 1987;60(4):810–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Jakate S, Yabes A, Giusto D, et al. Diffuse cirrhosis-like hepatocellular carcinoma: a clinically and radiographically undetected variant mimicking cirrhosis. Am J Surg Pathol. 2010;34(7):935–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Rodriguez-Peralvarez M, Luong TV, Andreana L, et al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability. Ann Surg Oncol. 2013;20(1):325–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Del Rosario AD, Bui HX, Singh J, et al. Intracytoplasmic eosinophilic hyaline globules in cartilaginous neoplasms: a surgical, pathological, ultrastructural, and electron probe x-ray microanalytic study. Hum Pathol. 1994;25(12):1283–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Stumptner C, Heid H, Fuchsbichler A, et al. Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Am J Pathol. 1999;154(6):1701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    International Consensus Group for Hepatocellular Neoplasia, The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49(2):658–64.CrossRefGoogle Scholar
  24. 24.
    Yong KJ, Gao C, Lim JS, et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med. 2013;368(24):2266–76.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kee KM, Wang JH, Lin CY, et al. Validation of the 7th edition TNM staging system for hepatocellular carcinoma: an analysis of 8,828 patients in a single medical center. Dig Dis Sci. 2013;58(9):2721–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Nault JC, De Reynies A, Villanueva A, et al. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology. 2013;145(1):176–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Shirabe K, Toshima T, Kimura K, et al. New scoring system for prediction of microvascular invasion in patients with hepatocellular carcinoma. Liver Int. 2014;34(6):937–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsujita E, Yamashita Y, Takeishi K, et al. Poor prognostic factors after repeat hepatectomy for recurrent hepatocellular carcinoma in the modern era. Am Surg. 2012;78(4):419–25.PubMedGoogle Scholar
  29. 29.
    Kadalayil L, Benini R, Pallan L, et al. A simple prognostic scoring system for patients receiving transarterial embolisation for hepatocellular cancer. Ann Oncol. 2013;24(10):2565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Okuda K, Nakashima T, Obata H, et al. Clinicopathological studies of minute hepatocellular carcinoma. Analysis of 20 cases, including 4 with hepatic resection. Gastroenterology. 1977;73(1):109–15.PubMedGoogle Scholar
  31. 31.
    Moribe T, Iizuka N, Miura T, et al. Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma. Int J Cancer. 2009;125(2):388–97.PubMedCrossRefGoogle Scholar
  32. 32.
    Llovet JM, Chen Y, Wurmbach E, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology. 2006;131(6):1758–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Lu XY, Xi T, Lau WY, et al. Pathobiological features of small hepatocellular carcinoma: correlation between tumor size and biological behavior. J Cancer Res Clin Oncol. 2011;137(4):567–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Cong Wm WM. Small hepatocellular carcinoma - current and future approaches. Hepatol Int. 2013;7(3):805–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Tremosini S, Forner A, Boix L, et al. Prospective validation of an immunohistochemical panel (glypican 3, heat shock protein 70 and glutamine synthetase) in liver biopsies for diagnosis of very early hepatocellular carcinoma. Gut. 2012;61(10):1481–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Eggert T, Mcglynn KA, Duffy A, et al. Epidemiology of fibrolamellar hepatocellular carcinoma in the USA, 2000-10. Gut. 2013;62(11):1667–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Honeyman JN, Simon EP, Robine N, et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014;343(6174):1010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Malouf GG, Job S, Paradis V, et al. Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature. Hepatology. 2014;59(6):2228–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaseb AO, Shama M, Sahin IH, et al. Prognostic indicators and treatment outcome in 94 cases of fibrolamellar hepatocellular carcinoma. Oncology. 2013;85(4):197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Weeda VB, Murawski M, Mccabe AJ, et al. Fibrolamellar variant of hepatocellular carcinoma does not have a better survival than conventional hepatocellular carcinoma–results and treatment recommendations from the Childhood Liver Tumour Strategy Group (SIOPEL) experience. Eur J Cancer. 2013;49(12):2698–704.PubMedCrossRefGoogle Scholar
  41. 41.
    Garancini M, Goffredo P, Pagni F, et al. Combined hepatocellular-cholangiocarcinoma: a population-level analysis of an uncommon primary liver tumor. Liver Transpl. 2014;20(8):952–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Wakasa T, Wakasa K, Shutou T, et al. A histopathological study on combined hepatocellular and cholangiocarcinoma: cholangiocarcinoma component is originated from hepatocellular carcinoma. Hepato-Gastroenterology. 2007;54(74):508–13.PubMedGoogle Scholar
  43. 43.
    Coulouarn C, Cavard C, Rubbia-Brandt L, et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGF beta signaling pathways. Carcinogenesis. 2012;33(9):1791–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Cai X, Zhai J, Kaplan DE, et al. Background progenitor activation is associated with recurrence after hepatectomy of combined hepatocellular-cholangiocarcinoma. Hepatology. 2012;56(5):1804–16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yamaguchi R, Nakashima O, Ogata T, et al. Hepatocellular carcinoma with an unusual neuroendocrine component. Pathol Int. 2004;54(11):861–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Garcia MT, Bejarano PA, Yssa M, et al. Tumor of the liver (hepatocellular and high grade neuroendocrine carcinoma): a case report and review of the literature. Virchows Arch. 2006;449(3):376–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Akiba J, Nakashima O, Hattori S, et al. Clinicopathologic analysis of combined hepatocellular-cholangiocarcinoma according to the latest WHO classification. Am J Surg Pathol. 2013;37(4):496–505.PubMedCrossRefGoogle Scholar
  48. 48.
    Yeh MM. Pathology of combined hepatocellular-cholangiocarcinoma. J Gastroenterol Hepatol. 2010;25(9):1485–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Komuta M, Spee B, Vander Borght S, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology. 2008;47(5):1544–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Woo HG, Lee JH, Yoon JH, et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res. 2010;70(8):3034–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yin X, Zhang BH, Qiu SJ, et al. Combined hepatocellular carcinoma and cholangiocarcinoma: clinical features, treatment modalities, and prognosis. Ann Surg Oncol. 2012;19(9):2869–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Park YH, Hwang S, Ahn CS, et al. Long-term outcome of liver transplantation for combined hepatocellular carcinoma and cholangiocarcinoma. Transplant Proc. 2013;45(8):3038–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Groeschl RT, Turaga KK, Gamblin TC. Transplantation versus resection for patients with combined hepatocellular carcinoma-cholangiocarcinoma. J Surg Oncol. 2013;107(6):608–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Lu XY, Xi T, Lau WY, et al. Hepatocellular carcinoma expressing cholangiocyte phenotype is a novel subtype with highly aggressive behavior. Ann Surg Oncol. 2011;18(8):2210–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Govaere O, Komuta M, Berkers J, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut. 2014;63(4):674–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Bridgewater J, Galle PR, Khan SA, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60(6):1268–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Aishima S, Kuroda Y, Nishihara Y, et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am J Surg Pathol. 2007;31(7):1059–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Nakanuma Y, Xu J, Harada K, et al. Pathological spectrum of intrahepatic cholangiocarcinoma arising in non-biliary chronic advanced liver diseases. Pathol Int. 2011;61(5):298–305.PubMedCrossRefGoogle Scholar
  59. 59.
    Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57(1):69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Li M, Li J, Li P, et al. Hepatitis B virus infection increases the risk of cholangiocarcinoma: a meta-analysis and systematic review. J Gastroenterol Hepatol. 2012;27(10):1561–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Razumilava N, Gores GJ. Classification, diagnosis, and management of cholangiocarcinoma. Clin Gastroenterol Hepatol. 2013;11(1):13–21.. e11; quiz e13-14PubMedCrossRefGoogle Scholar
  62. 62.
    Cong WM, Bakker A, Swalsky PA, et al. Multiple genetic alterations involved in the tumorigenesis of human cholangiocarcinoma: a molecular genetic and clinicopathological study. J Cancer Res Clin Oncol. 2001;127(3):187–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Sia D, Tovar V, Moeini A, et al. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene. 2013;32(41):4861–70.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29.PubMedCrossRefGoogle Scholar
  65. 65.
    Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48(1):308–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Francis H, Alpini G, Demorrow S. Recent advances in the regulation of cholangiocarcinoma growth. Am J Physiol Gastrointest Liver Physiol. 2010;299(1):G1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fan B, Malato Y, Calvisi DF, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 2012;122(8):2911–5.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zender S, Nickeleit I, Wuestefeld T, et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell. 2013;23(6):784–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142(4):1021–31.. e1015PubMedCrossRefGoogle Scholar
  70. 70.
    Oishi N, Kumar MR, Roessler S, et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology. 2012;56(5):1792–803.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Karakatsanis A, Papaconstantinou I, Gazouli M, et al. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52(4):297–303.PubMedCrossRefGoogle Scholar
  72. 72.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Nathan H, Aloia TA, Vauthey JN, et al. A proposed staging system for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2009;16(1):14–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. J Hepato-Biliary-Pancreat Surg. 2003;10(4):288–91.CrossRefGoogle Scholar
  75. 75.
    Jiang W, Zeng ZC, Tang ZY, et al. A prognostic scoring system based on clinical features of intrahepatic cholangiocarcinoma: the Fudan score. Ann Oncol. 2011;22(7):1644–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang Y, Li J, Xia Y, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 2013;31(9):1188–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhou YM, Yang JM, Wang XF, et al. Characteristics of extrahepatic lymph node metastases in intrahepatic cholangiocarcinoma. Chin J Dig Surg. 2007;6(2):96–8.Google Scholar
  78. 78.
    Rimola J, Forner A, Reig M, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology. 2009;50(3):791–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Nakanuma Y, Sato Y, Harada K, et al. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol. 2010;2(12):419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Spolverato G, Ejaz A, Kim Y, et al. Tumor size predicts vascular invasion and histologic grade among patients undergoing resection of intrahepatic cholangiocarcinoma. J Gastrointest Surg. 2014;18(7):1284–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Liau JY, Tsai JH, Yuan RH, et al. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol. 2014;27(8):1163–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Ji LH, Zhao G, Wu ZY. Typing and staging and treatment of intrahepatic cholangiocarcinoma. Chin. J. Dig. Surg. 2010;3:193–6.Google Scholar
  83. 83.
    Aishima S, Nishihara Y, Iguchi T, et al. Lymphatic spread is related to VEGF-C expression and D2-40-positive myofibroblasts in intrahepatic cholangiocarcinoma. Mod Pathol. 2008;21(3):256–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Dong H, Cong WL, Zhu ZZ, et al. Evaluation of immunohistochemical markers for differential diagnosis of hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Chin J Oncol. 2008;30(9):702–5.Google Scholar
  85. 85.
    Aishima S, Fujita N, Mano Y, et al. Different roles of S100P overexpression in intrahepatic cholangiocarcinoma: carcinogenesis of perihilar type and aggressive behavior of peripheral type. Am J Surg Pathol. 2011;35(4):590–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Ruys AT, Groot Koerkamp B, Wiggers JK, et al. Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21(2):487–500.PubMedCrossRefGoogle Scholar
  87. 87.
    Kloppel G, Adsay V, Konukiewitz B, et al. Precancerous lesions of the biliary tree. Best Pract Res Clin Gastroenterol. 2013;27(2):285–97.PubMedCrossRefGoogle Scholar
  88. 88.
    Nakanuma Y, Sato Y, Ojima H, et al. Clinicopathological characterization of so-called “cholangiocarcinoma with intraductal papillary growth” with respect to “intraductal papillary neoplasm of bile duct (IPNB)”. Int J Clin Exp Pathol. 2014;7(6):3112–22.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Nishino R, Honda M, Yamashita T, et al. Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol. 2008;49(2):207–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Becker NS, Rodriguez JA, Barshes NR, et al. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg. 2008;12(1):117–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Arnaoutakis DJ, Kim Y, Pulitano C, et al. Management of biliary cystic tumors: a multi-institutional analysis of a rare liver tumor. Ann Surg. 2014;261(2):361–7.CrossRefGoogle Scholar
  92. 92.
    Vogt DP, Henderson JM, Chmielewski E. Cystadenoma and cystadenocarcinoma of the liver: a single center experience. J Am Coll Surg. 2005;200(5):727–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Dai YH, Yeo YH, Li YF, et al. Hepatobiliary cystadenocarcinoma without mesenchymal stroma in a female patient: a case report. BMC Gastroenterol. 2014;14:109.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Shibahara H, Tamada S, Goto M, et al. Pathologic features of mucin-producing bile duct tumors: two histopathologic categories as counterparts of pancreatic intraductal papillary-mucinous neoplasms. Am J Surg Pathol. 2004;28(3):327–38.PubMedCrossRefGoogle Scholar
  95. 95.
    Yang XW, Yang J, Li L, et al. The outcome of ipsilateral hemihepatectomy in mucin-producing bile duct tumors. PLoS One. 2014;9(4):e92010.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sasaki M, Matsubara T, Kakuda Y, et al. Immunostaining for polycomb group protein EZH2 and senescent marker p16INK4a may be useful to differentiate cholangiolocellular carcinoma from ductular reaction and bile duct adenoma. Am J Surg Pathol. 2014;38(3):364–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Kanamoto M, Yoshizumi T, Ikegami T, et al. Cholangiolocellular carcinoma containing hepatocellular carcinoma and cholangiocellular carcinoma, extremely rare tumor of the liver: a case report. J Med Investig. 2008;55(1–2):161–5.CrossRefGoogle Scholar
  98. 98.
    Lee W. Intrahepatic lymphoepithelioma-like cholangiocarcinoma not associated with epstein-barr virus: a case report. Case Rep Oncol. 2011;4(1):68–73.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Shinoda M, Kadota Y, Tsujikawa H, et al. Lymphoepithelioma-like hepatocellular carcinoma: a case report and a review of the literature. World J. Surg. Oncol. 2013;11:97.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nemolato S, Fanni D, Naccarato AG, et al. Lymphoepithelioma-like hepatocellular carcinoma: a case report and a review of the literature. World J Gastroenterol. 2008;14(29):4694–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Arakawa Y, Shimada M, Ikegami T, et al. Mucoepidermoid carcinoma of the liver: report of a rare case and review of the literature. Hepatol Res. 2008;38(7):736–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Guo XQ, Li B, Li Y, et al. Unusual mucoepidermoid carcinoma of the liver misdiagnosed as squamous cell carcinoma by intraoperative histological examination. Diagn Pathol. 2014;9:24.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Iimuro Y, Asano Y, Suzumura K, et al. Primary squamous cell carcinoma of the liver: an uncommon finding in contrast-enhanced ultrasonography imaging. Case Rep Gastroenterol. 2011;5(3):628–35.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Avezbadalov A, Aksenov S, Kaplan B, et al. Asymptomatic primary squamous cell carcinoma of the liver. J Commun Support Oncol. 2014;12(2):75–6.CrossRefGoogle Scholar
  105. 105.
    Liu J. Y HY, He J. Primary squamous cell carcinoma of the liver: report of a case. Acad J Second Mil Med Uni. 2009;30(1):108–10.Google Scholar
  106. 106.
    Shimizu S, Oshita A, Tashiro H, et al. Synchronous double cancers of primary hepatic adenosquamous carcinoma and hepatocellular carcinoma: report of a case. Surg Today. 2013;43(4):418–23.PubMedCrossRefGoogle Scholar
  107. 107.
    Park SY, Cha EJ, Moon WS. Adenosquamous carcinoma of the liver. Clin Mol Hepatol. 2012;18(3):326–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu Y, Sang XT, Gao WS, et al. The first case of primary epithelial-myoepithelial carcinoma in the liver. Chin J Surg. 2006;44(21):1477–9.PubMedGoogle Scholar
  109. 109.
    Tsuneyama K, Hoso M, Kono N, et al. An unusual case of epithelial-myoepithelial carcinoma of the liver. Am J Surg Pathol. 1999;23(3):349–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Haas S, Gutgemann I, Wolff M, et al. Intrahepatic clear cell cholangiocarcinoma: immunohistochemical aspects in a very rare type of cholangiocarcinoma. Am J Surg Pathol. 2007;31(6):902–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Khera R, Uppin SG, Uppin MS, et al. Clear cell papillary cholangiocarcinoma: a case report with review of literature. Indian J Pathol Microbiol. 2014;57(1):105–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Kim YI, Kim ST, Lee GK, et al. Papillary cystic tumor of the liver. A case report with ultrastructural observation. Cancer. 1990;65(12):2740–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Ishak Kg GZ, Stocker J. Tumors of the liver and intrahepatic bile ducts, vol. 276. Washington, DC: American Registry of Pathology; 2001.Google Scholar
  114. 114.
    Montell Garcia M, Romero Cabello R, Romero Feregrino R, et al. Angiosarcoma of the liver as a cause of fulminant liver failure. BMJ Case Rep. 2012.Google Scholar
  115. 115.
    Poggi Machuca L, Ibarra Chirinos O, Lopez Del Aguila J, et al. Hepatic angiosarcoma: case report and review of literature. Rev Gastroenterol Peru. 2012;32(3):317–22.PubMedGoogle Scholar
  116. 116.
    Dimashkieh HH, Mo JQ, Wyatt-Ashmead J, et al. Pediatric hepatic angiosarcoma: case report and review of the literature. Pediatr Dev Pathol. 2004;7(5):527–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Yang KF, Leow VM, Hasnan MN, et al. Primary hepatic angiosarcoma: difficulty in clinical, radiological, and pathological diagnosis. Med J Malays. 2012;67(1):127–8.Google Scholar
  118. 118.
    Mehrabi A, Kashfi A, Fonouni H, et al. Primary malignant hepatic epithelioid hemangioendothelioma: a comprehensive review of the literature with emphasis on the surgical therapy. Cancer. 2006;107(9):2108–21.PubMedCrossRefGoogle Scholar
  119. 119.
    Tsarouha H, Kyriazoglou AI, Ribeiro FR, et al. Chromosome analysis and molecular cytogenetic investigations of an epithelioid hemangioendothelioma. Cancer Genet Cytogenet. 2006;169(2):164–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Cao Y, Zou XM, Feng L, et al. Cytogenetic alterations in lung epithelioid hemangioendothelioma. Carcinog Teratog Mutagen. 2009;21(3):185–8.Google Scholar
  121. 121.
    Simonelli C, Tedeschi R, Gloghini A, et al. Plasma HHV-8 viral load in HHV-8-related lymphoproliferative disorders associated with HIV infection. J Med Virol. 2009;81(5):888–96.PubMedCrossRefGoogle Scholar
  122. 122.
    Wang XD, Hui Y. Advances in the genotyping of human herpesvirus 8. Int J Dermatol Venereol. 2009;35(2):3.Google Scholar
  123. 123.
    Bronowicki JP, Bineau C, Feugier P, et al. Primary lymphoma of the liver: clinical-pathological features and relationship with HCV infection in French patients. Hepatology. 2003;37(4):781–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Sekiguchi Y, Yoshikawa H, Shimada A, et al. Primary hepatic circumscribed Burkitt’s lymphoma that developed after acute hepatitis B: report of a case with a review of the literature. J Clin Exp Hematop. 2013;53(2):167–73.PubMedCrossRefGoogle Scholar
  125. 125.
    Haider FS, Smith R, Khan S. Primary hepatic lymphoma presenting as fulminant hepatic failure with hyperferritinemia: a case report. J Med Case Rep. 2008;2:279.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lei KI. Primary non-Hodgkin’s lymphoma of the liver. Leuk Lymphoma. 1998;29(3–4):293–9.PubMedGoogle Scholar
  127. 127.
    Li XQ, Cheuk W, Lam PW, et al. Inflammatory pseudotumor-like follicular dendritic cell tumor of liver and spleen: granulomatous and eosinophil-rich variants mimicking inflammatory or infective lesions. Am J Surg Pathol. 2014;38(5):646–53.PubMedCrossRefGoogle Scholar
  128. 128.
    Ge R, Liu C, Yin X, et al. Clinicopathologic characteristics of inflammatory pseudotumor-like follicular dendritic cell sarcoma. Int. J. Clin. Exp. Pathol. 2014;7(5):2421–9.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Chao MW, Gibbs P, Wirth A, et al. Radiotherapy in the management of solitary extramedullary plasmacytoma. Intern Med J. 2005;35(4):211–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Soutar R, Lucraft H, Jackson G, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Br J Haematol. 2004;124(6):717–26.PubMedCrossRefGoogle Scholar
  131. 131.
    Palumbo A, Rajkumar SV, San Miguel JF, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014;32(6):587–600.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lee JY, Won JH, Kim HJ, et al. Solitary extramedullary plasmacytoma of the liver without systemic monoclonal gammopathy. J Korean Med Sci. 2007;22(4):754–7.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Straetmans J, Stokroos R. Extramedullary plasmacytomas in the head and neck region. Eur Arch Otorhinolaryngol. 2008;265(11):1417–23.PubMedCrossRefGoogle Scholar
  134. 134.
    Miyabe K, Masaki A, Nakazawa T, et al. Histiocytic sarcoma of the bile duct. Intern Med. 2014;53(7):707–12.PubMedCrossRefGoogle Scholar
  135. 135.
    Llamas-Velasco M, Cannata J, Dominguez I, et al. Coexistence of Langerhans cell histiocytosis, Rosai-Dorfman disease and splenic lymphoma with fatal outcome after rapid development of histiocytic sarcoma of the liver. J Cutan Pathol. 2012;39(12):1125–30.PubMedCrossRefGoogle Scholar
  136. 136.
    Wang E, Hutchinson CB, Huang Q, et al. Histiocytic sarcoma arising in indolent small B-cell lymphoma: report of two cases with molecular/genetic evidence suggestive of a ‘transdifferentiation’ during the clonal evolution. Leuk Lymphoma. 2010;51(5):802–12.PubMedCrossRefGoogle Scholar
  137. 137.
    Feldman AL, Arber DA, Pittaluga S, et al. Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lymphoma clone. Blood. 2008;111(12):5433–9.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Vos JA, Abbondanzo SL, Barekman CL, et al. Histiocytic sarcoma: a study of five cases including the histiocyte marker CD163. Mod Pathol. 2005;18(5):693–704.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang X, Kryston JJ, Michalak WA, et al. Histiocytic sarcoma in the small intestine: a case report with flow cytometry study and review of the literature. Pathol Res Pract. 2008;204(10):763–70.PubMedCrossRefGoogle Scholar
  140. 140.
    Purgina B, Rao UN, Miettinen M, et al. AIDS-related EBV-associated smooth muscle tumors: a review of 64 published cases. Pathol Res Int. 2011;2011:561548.Google Scholar
  141. 141.
    Villella JA, Bogner PN, Jani-Sait SN, et al. Rhabdomyosarcoma of the cervix in sisters with review of the literature. Gynecol Oncol. 2005;99(3):742–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Corapcioglu F, Memet Ozek M, Sav A, et al. Congenital pineoblastoma and parameningeal rhabdomyosarcoma: concurrent two embryonal tumors in a young infant. Childs Nerv Syst. 2006;22(5):533–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Barr FG, Smith LM, Lynch JC, et al. Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: a report from the Children’s Oncology Group. J Mol Diagn. 2006;8(2):202–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Rudzinski ER, Anderson JR, Lyden ER, et al. Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the soft tissue sarcoma committee of the children’s oncology group. Am J Surg Pathol. 2014;38(5):654–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Besnard-Guerin C, Newsham I, Winqvist R, et al. A common region of loss of heterozygosity in Wilms’ tumor and embryonal rhabdomyosarcoma distal to the D11S988 locus on chromosome 11p15.5. Hum Genet. 1996;97(2):163–70.PubMedCrossRefGoogle Scholar
  146. 146.
    Besnard-Guerin C, Cavenee WK, Newsham I. A new highly polymorphic DNA restriction site marker in the 5′ region of the human tyrosine hydroxylase gene (TH) detecting loss of heterozygosity in human embryonal rhabdomyosarcoma. Hum Genet. 1994;93(3):349–50.PubMedCrossRefGoogle Scholar
  147. 147.
    Sabbioni S, Barbanti-Brodano G, Croce CM, et al. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 1997;57(20):4493–7.PubMedGoogle Scholar
  148. 148.
    Afify A, Mark HF. Trisomy 8 in embryonal rhabdomyosarcoma detected by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1999;108(2):127–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Barr FG, Chatten J, D’cruz CM, et al. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 1995;273(7):553–7.PubMedCrossRefGoogle Scholar
  150. 150.
    De Alava E, Ladanyi M, Rosai J, et al. Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol. 1995;147(6):1584–91.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Downing JR, Khandekar A, Shurtleff SA, et al. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol. 1995;146(3):626–34.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Arden KC, Anderson MJ, Finckenstein FG, et al. Detection of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma using the reverse transcriptase-polymerase chain reaction. Genes Chromosom Cancer. 1996;16(4):254–60.PubMedCrossRefGoogle Scholar
  153. 153.
    Schoofs G, Braeye L, Vanheste R, et al. Hepatic rhabdomyosarcoma in an adult: a rare primary malignant liver tumor. Case report and literature review. Acta Gastroenterol Belg. 2011;74(4):576–81.PubMedGoogle Scholar
  154. 154.
    Heerema-Mckenney A, Wijnaendts LC, Pulliam JF, et al. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype. Am J Surg Pathol. 2008;32(10):1513–22.PubMedCrossRefGoogle Scholar
  155. 155.
    Neville HL, Andrassy RJ, Lobe TE, et al. Preoperative staging, prognostic factors, and outcome for extremity rhabdomyosarcoma: a preliminary report from the Intergroup Rhabdomyosarcoma Study IV (1991–1997). J Pediatr Surg. 2000;35(2):317–21.PubMedCrossRefGoogle Scholar
  156. 156.
    Tomimaru Y, Nagano H, Marubashi S, et al. Sclerosing epithelioid fibrosarcoma of the liver infiltrating the inferior vena cava. World J Gastroenterol. 2009;15(33):4204–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Coindre JM, Mariani O, Chibon F, et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol. 2003;16(3):256–62.PubMedCrossRefGoogle Scholar
  158. 158.
    Yao D, Dai C. Clinical characteristics of the primary hepatic malignant fibrous histiocytoma in China: case report and review of the literature. World J Surg Oncol. 2012;10(2)Google Scholar
  159. 159.
    Li YR, Akbari E, Tretiakova MS, et al. Primary hepatic malignant fibrous histiocytoma: clinicopathologic characteristics and prognostic value of ezrin expression. Am J Surg Pathol. 2008;32(8):1144–58.PubMedCrossRefGoogle Scholar
  160. 160.
    Wei ZG, Tang LF, Chen ZM, et al. Childhood undifferentiated embryonal liver sarcoma: clinical features and immunohistochemistry analysis. J Pediatr Surg. 2008;43(10):1912–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Gao J, Fei L, Li S, et al. Undifferentiated embryonal sarcoma of the liver in a child: a case report and review of the literature. Oncol Lett. 2013;5(3):739–42.PubMedGoogle Scholar
  162. 162.
    Shehata BM, Gupta NA, Katzenstein HM, et al. Undifferentiated embryonal sarcoma of the liver is associated with mesenchymal hamartoma and multiple chromosomal abnormalities: a review of eleven cases. Pediatr Dev Pathol. 2011;14(2):111–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Begueret H, Trouette H, Vielh P, et al. Hepatic undifferentiated embryonal sarcoma: malignant evolution of mesenchymal hamartoma? Study of one case with immunohistochemical and flow cytometric emphasis. J Hepatol. 2001;34(1):178–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Rajaram V, Knezevich S, Bove KE, et al. DNA sequence of the translocation breakpoints in undifferentiated embryonal sarcoma arising in mesenchymal hamartoma of the liver harboring the t(11;19)(q11;q13.4) translocation. Genes Chromosom Cancer. 2007;46(5):508–13.PubMedCrossRefGoogle Scholar
  165. 165.
    Mathews J, Duncavage EJ, Pfeifer JD. Characterization of translocations in mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver. Exp Mol Pathol. 2013;95(3):319–24.PubMedCrossRefGoogle Scholar
  166. 166.
    Keating S, Taylor GP. Undifferentiated (embryonal) sarcoma of the liver: ultrastructural and immunohistochemical similarities with malignant fibrous histiocytoma. Hum Pathol. 1985;16(7):693–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Parham DM, Kelly DR, Donnelly WH, et al. Immunohistochemical and ultrastructural spectrum of hepatic sarcomas of childhood: evidence for a common histogenesis. Mod Pathol. 1991;4(5):648–53.PubMedGoogle Scholar
  168. 168.
    Lenze F, Birkfellner T, Lenz P, et al. Undifferentiated embryonal sarcoma of the liver in adults. Cancer. 2008;112(10):2274–82.PubMedCrossRefGoogle Scholar
  169. 169.
    Kiani B, Ferrell LD, Qualman S, et al. Immunohistochemical analysis of embryonal sarcoma of the liver. Appl Immunohistochem Mol Morphol. 2006;14(2):193–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Nishio J, Iwasaki H, Sakashita N, et al. Undifferentiated (embryonal) sarcoma of the liver in middle-aged adults: smooth muscle differentiation determined by immunohistochemistry and electron microscopy. Hum Pathol. 2003;34(3):246–52.PubMedCrossRefGoogle Scholar
  171. 171.
    Ida S, Okajima H, Hayashida S, et al. Undifferentiated sarcoma of the liver. Am J Surg. 2009;198(1):e7–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Nguyen TT, Gorman B, Shields D, et al. Malignant hepatic angiomyolipoma: report of a case and review of literature. Am J Surg Pathol. 2008;32(5):793–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Folpe AL, Mentzel T, Lehr HA, et al. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29(12):1558–75.PubMedCrossRefGoogle Scholar
  174. 174.
    Parfitt JR, Bella AJ, Izawa JI, et al. Malignant neoplasm of perivascular epithelioid cells of the liver. Arch Pathol Lab Med. 2006;130(8):1219–22.PubMedGoogle Scholar
  175. 175.
    Park SH, Choi SB, Kim WB, et al. Huge primary osteosarcoma of the liver presenting an aggressive recurrent pattern following surgical resection. J Dig Dis. 2009;10(3):231–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Nawabi A, Rath S, Nissen N, et al. Primary hepatic osteosarcoma. J Gastrointest Surg. 2009;13(8):1550–3.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Experts Group of Chinese pancreatic neuroendocrine tumors of gastrointestinal pathology Consensus in 2013. Consensus on pathological diagnosis of gastrointestinal pancreatic neuroendocrine tumors in China (2013Edition). Chin. J. Pathol. 2013;42(10):691–4.Google Scholar
  178. 178.
    Gravante G, De Liguori CN, Overton J, et al. Primary carcinoids of the liver: a review of symptoms, diagnosis and treatments. Dig Surg. 2008;25(5):364–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Zhao J, Yang B, Xu C, et al. Study on clinicopathologic grading system and prognosis of primary hepatic neuroendocrine neoplasms. Chin. J. Pathol. 2012;41(2):102–6.Google Scholar
  180. 180.
    Fenwick SW, Wyatt JI, Toogood GJ, et al. Hepatic resection and transplantation for primary carcinoid tumors of the liver. Ann Surg. 2004;239(2):210–9.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Karampelas IN, Syrigos KN, Saif MW. Targeted agents in treatment of neuroendocrine tumors of pancreas. JOP. 2014;15(4):351–3.PubMedGoogle Scholar
  182. 182.
    Fiel MI, Schwartz M, Min AD, et al. Malignant schwannoma of the liver in a patient without neurofibromatosis: a case report and review of the literature. Arch Pathol Lab Med. 1996;120(12):1145–7.PubMedGoogle Scholar
  183. 183.
    Kobori L, Nagy P, Mathe Z, et al. Malignant peripheral nerve sheath tumor of the liver: a case report. Pathol Oncol Res. 2008;14(3):329–32.PubMedCrossRefGoogle Scholar
  184. 184.
    Heywood G, Burgart LJ, Nagorney DM. Ossifying malignant mixed epithelial and stromal tumor of the liver: a case report of a previously undescribed tumor. Cancer. 2002;94(4):1018–22.PubMedCrossRefGoogle Scholar
  185. 185.
    Goto H, Tanaka A, Kondo F, et al. Carcinosarcoma of the liver. Intern Med. 2010;49(23):2577–82.PubMedCrossRefGoogle Scholar
  186. 186.
    Lai Q, Levi Sandri GB, Melandro F, et al. An unusual case of hepatic carcinosarcoma. G Chir. 2011;32(8–9):372–3.PubMedGoogle Scholar
  187. 187.
    Thompson L, Chang B, Barsky SH. Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis. Am J Surg Pathol. 1996;20(3):277–85.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhao Q, Su CQ, Dong H, et al. Hepatocellular carcinoma and hepatic adenocarcinosarcoma in a patient with hepatitis B virus-related cirrhosis. Semin Liver Dis. 2010;30(1):107–12.PubMedCrossRefGoogle Scholar
  189. 189.
    Schaefer IM, Schweyer S, Kuhlgatz J. Chromosomal imbalances in primary hepatic carcinosarcoma. Hum Pathol. 2012;43(8):1328–33.PubMedCrossRefGoogle Scholar
  190. 190.
    Luchini C, Capelli P, Fassan M, et al. Next-generation histopathologic diagnosis: a lesson from a hepatic carcinosarcoma. J Clin Oncol. 2014;32(17):e63–6.PubMedCrossRefGoogle Scholar
  191. 191.
    Warren M, Thompson KS. Two cases of primary yolk sac tumor of the liver in childhood: case reports and literature review. Pediatr Dev Pathol. 2009;12(5):410–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Shi H, Cao D, Wei L, et al. Primary choriocarcinoma of the liver: a clinicopathological study of five cases in males. Virchows Arch. 2010;456(1):65–70.PubMedCrossRefGoogle Scholar
  193. 193.
    Theegarten D, Reinacher A, Graeven U, et al. Mixed malignant germ cell tumour of the liver. Virchows Arch. 1998;433(1):93–6.PubMedCrossRefGoogle Scholar
  194. 194.
    Zhao JG, Cai B, Qiu B, et al. A case report of immature hepatic teratoma. Chin J Hepatol. 2010;18(1):72–72.Google Scholar
  195. 195.
    Xu AM, Gong SJ, Song WH, et al. Primary mixed germ cell tumor of the liver with sarcomatous components. World J Gastroenterol. 2010;16(5):652–6.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Eghtesad B, Marsh WJ, Cacciarelli T, et al. Liver transplantation for growing teratoma syndrome: report of a case. Liver Transpl. 2003;9(11):1222–4.PubMedCrossRefGoogle Scholar
  197. 197.
    Martelli MG, Liu C. Malignant rhabdoid tumour of the liver in a seven-month-old female infant: a case report and literature review. Afr J Paediatr Surg. 2013;10(1):50–4.PubMedCrossRefGoogle Scholar
  198. 198.
    Abe T, Oguma E, Nozawa K, et al. Malignant rhabdoid tumor of the liver: a case report with US and CT manifestation. Jpn J Radiol. 2009;27(10):462–5.PubMedCrossRefGoogle Scholar
  199. 199.
    Yuri T, Danbara N, Shikata N, et al. Malignant rhabdoid tumor of the liver: case report and literature review. Pathol Int. 2004;54(8):623–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Hsueh C, Kuo TT. Congenital malignant rhabdoid tumor presenting as a cutaneous nodule: report of 2 cases with review of the literature. Arch Pathol Lab Med. 1998;122(12):1099–102.PubMedGoogle Scholar
  201. 201.
    Zhou B, Zhang M, Yan S, et al. Primary gastrointestinal stromal tumor of the liver: report of a case. Surg Today. 2014;44(6):1142–6.PubMedCrossRefGoogle Scholar
  202. 202.
    Kim HO, Kim JE, Bae KS, et al. Imaging findings of primary malignant gastrointestinal stromal tumor of the liver. Jpn J Radiol. 2014;32(6):365–70.PubMedCrossRefGoogle Scholar
  203. 203.
    Ochiai T, Sonoyama T, Kikuchi S, et al. Primary large gastrointestinal stromal tumor of the liver: report of a case. Surg Today. 2009;39(7):633–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Luo XL, Liu D, Yang JJ, et al. Primary gastrointestinal stromal tumor of the liver: a case report. World J Gastroenterol. 2009;15(29):3704–7.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    De Chiara A, De Rosa V, Lastoria S, et al. Primary gastrointestinal stromal tumor of the liver with lung metastases successfully treated with STI-571 (imatinib mesylate). Front Biosci. 2006;11:498–501.PubMedCrossRefGoogle Scholar
  206. 206.
    Hu X, Forster J, Damjanov I. Primary malignant gastrointestinal stromal tumor of the liver. Arch Pathol Lab Med. 2003;127(12):1606–8.PubMedGoogle Scholar
  207. 207.
    Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22(18):3813–25.PubMedCrossRefGoogle Scholar
  208. 208.
    Dang YZ, Gao J, Li J, et al. The clinicopathologic features and gene mutation status of gastrointestinal stromal tumor (with the analysis of 660 cases of patients). Chin J Pract Surg. 2013;33(1):61–5.Google Scholar
  209. 209.
    He HY, Fang WG, Zhong HH, et al. Status and clinical implication of c-kit and PDGFRA mutations in 165 cases of gastrointestinal stromal tumor (GIST). Chin J Pathol. 2006;35(5):262–6.Google Scholar
  210. 210.
    Expert Committee of Csco on Gastrointestinal Stromal Tumor. Consensus on diagnosis and treatment of gastrointestinal stromal tumor in China (2013 Edition). Chin Clin Oncol. 2013;18(11):1025–32.Google Scholar
  211. 211.
    Agaimy A. Gastrointestinal stromal tumors (GIST) from risk stratification systems to the new TNM proposal: more questions than answers? A review emphasizing the need for a standardized GIST reporting. Int. J. Clin. Exp. Pathol. 2010;3(5):461–71.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Leonardou P, Semelka RC, Kanematsu M, et al. Primary malignant mesothelioma of the liver: MR imaging findings. Magn Reson Imaging. 2003;21(9):1091–3.PubMedCrossRefGoogle Scholar
  213. 213.
    Inagaki N, Kibata K, Tamaki T, et al. Primary intrahepatic malignant mesothelioma with multiple lymphadenopathies due to non-tuberculous mycobacteria: a case report and review of the literature. Oncol Lett. 2013;6(3):676–80.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Destephano DB, Wesley JR, Heidelberger KP, et al. Primitive cystic hepatic neoplasm of infancy with mesothelial differentiation: report of a case. Pediatr Pathol. 1985;4(3–4):291–302.PubMedCrossRefGoogle Scholar
  215. 215.
    Holla P, Hafez GR, Slukvin I, et al. Synovial sarcoma, a primary liver tumor--a case report. Pathol Res Pract. 2006;202(5):385–7.PubMedCrossRefGoogle Scholar
  216. 216.
    Srivastava A, Nielsen PG, Dal Cin P, et al. Monophasic synovial sarcoma of the liver. Arch Pathol Lab Med. 2005;129(8):1047–9.PubMedGoogle Scholar
  217. 217.
    Xiong B, Chen M, Ye F, et al. Primary monophasic synovial sarcoma of the liver in a 13-year-old boy. Pediatr Dev Pathol. 2013;16(5):353–6.PubMedCrossRefGoogle Scholar
  218. 218.
    Munoz PA, Rao MS, Reddy JK. Osteoclastoma-like giant cell tumor of the liver. Cancer. 1980;46(4):771–9.PubMedCrossRefGoogle Scholar
  219. 219.
    Rudloff U, Gao ZQ, Fields S, et al. Osteoclast-like giant cell tumor of the liver: a rare neoplasm with an aggressive clinical course. J Gastrointest Surg. 2005;9(2):207–14.PubMedCrossRefGoogle Scholar
  220. 220.
    Westra WH, Sturm P, Drillenburg P, et al. K-ras oncogene mutations in osteoclast-like giant cell tumors of the pancreas and liver: genetic evidence to support origin from the duct epithelium. Am J Surg Pathol. 1998;22(10):1247–54.PubMedCrossRefGoogle Scholar
  221. 221.
    Bauditz J, Rudolph B, Wermke W. Osteoclast-like giant cell tumors of the pancreas and liver. World J Gastroenterol. 2006;12(48):7878–83.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Tanahashi C, Nagae H, Nukaya T, et al. Combined hepatocellular carcinoma and osteoclast-like giant cell tumor of the liver: possible clue to histogenesis. Pathol Int. 2009;59(11):813–6.PubMedCrossRefGoogle Scholar
  223. 223.
    Kuwano H, Sonoda T, Hashimoto H, et al. Hepatocellular carcinoma with osteoclast-like giant cells. Cancer. 1984;54(5):837–42.PubMedCrossRefGoogle Scholar
  224. 224.
    Horie Y, Hori T, Hirayama C, et al. Osteoclast-like giant cell tumor of the liver. Acta Pathol Jpn. 1987;37(8):1327–35.PubMedGoogle Scholar
  225. 225.
    Hood DL, Bauer TW, Leibel SA, et al. Hepatic giant cell carcinoma. An ultrastructural and immunohistochemical study. Am J Clin Pathol. 1990;93(1):111–6.PubMedCrossRefGoogle Scholar
  226. 226.
    Ahaouche M, Cazals-Hatem D, Sommacale D, et al. A malignant hepatic tumour with osteoclast-like giant cells. Histopathology. 2005;46(5):590–2.PubMedCrossRefGoogle Scholar
  227. 227.
    Andreola S, Lombardi L, Scurelli A, et al. Osteoclastoma-like giant-cell tumor of the liver. Case Rep Tumori. 1985;71(6):615–20.Google Scholar
  228. 228.
    Haratake J, Yamada H, Horie A, et al. Giant cell tumor-like cholangiocarcinoma associated with systemic cholelithiasis. Cancer. 1992;69(10):2444–8.PubMedCrossRefGoogle Scholar
  229. 229.
    Mccluggage WG, Toner PG. Hepatocellular carcinoma with osteoclast-like giant cells. Histopathology. 1993;23(2):187–9.PubMedCrossRefGoogle Scholar
  230. 230.
    Sasaki A, Yokoyama S, Nakayama I, et al. Sarcomatoid hepatocellular carcinoma with osteoclast-like giant cells: case report and immunohistochemical observations. Pathol Int. 1997;47(5):318–24.PubMedCrossRefGoogle Scholar
  231. 231.
    Ikeda T, Seki S, Maki M, et al. Hepatocellular carcinoma with osteoclast-like giant cells: possibility of osteoclastogenesis by hepatocyte-derived cells. Pathol Int. 2003;53(7):450–6.PubMedCrossRefGoogle Scholar
  232. 232.
    Chetty R, Learmonth GM, Taylor DA. Giant cell hepatocellular carcinoma. Cytopathology. 1990;1(4):233–7.PubMedCrossRefGoogle Scholar
  233. 233.
    Zhang J, Chen L, Li F, et al. Recurrent and metastatic osteoclast-like giant cell tumor of the liver revealed by FDG PET/CT. Clin Nucl Med. 2012;37(10):1016–7.PubMedCrossRefGoogle Scholar
  234. 234.
    Jordan AH,Pappo A. Management of desmoplastic small round-cell tumors in children and young adults. J Pediatr Hematol Oncol. 2012;34(Suppl 2): S73–5.Google Scholar
  235. 235.
    Dufresne A, Cassier P, Couraud L, et al. Desmoplastic small round cell tumor: current management and recent findings. Sarcoma. 2012;2012:714986.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Feng ZZ, Li DC, Liu DC, et al. Desmoplastic small round cell tumor: a report of 2 cases and literature review. Chin J Clin Exp Pathol. 2008;24(1):83–5.Google Scholar
  237. 237.
    Chen XG, Peng MH, Luo RZ, et al. Desmoplastic small round cell tumor in liver (A case report and review of the literature). J Pract Oncol. 2002;17(1):61–3.Google Scholar
  238. 238.
    Wang LL, Perlman EJ, Vujanic GM, et al. Desmoplastic small round cell tumor of the kidney in childhood. Am J Surg Pathol. 2007;31(4):576–84.PubMedCrossRefGoogle Scholar
  239. 239.
    Rekhi B, Ahmed S, Basak R, et al. Desmoplastic small round cell tumor-clinicopathological spectrum, including unusual features and immunohistochemical analysis of 45 tumors diagnosed at a tertiary cancer referral centre, with molecular results t(11; 22) (p13; q12) (EWS-WT1) in select cases. Pathol Oncol Res. 2012;18(4):917–27.PubMedCrossRefGoogle Scholar
  240. 240.
    Zhang J, Xu H, Ren F, et al. Analysis of clinicopathological features and prognostic factors of desmoplastic small round cell tumor. Pathol Oncol Res. 2014;20(1):161–8.PubMedCrossRefGoogle Scholar
  241. 241.
    Chang F. Desmoplastic small round cell tumors: cytologic, histologic, and immunohistochemical features. Arch Pathol Lab Med. 2006;130(5):728–32.PubMedGoogle Scholar
  242. 242.
    Li M, Cai MY, Lu JB, et al. Clinicopathological investigation of four cases of desmoplastic small round cell tumor. Oncol Lett. 2012;4(3):423–8.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Al Balushi Z, Bulduc S, Mulleur C, et al. Desmoplastic small round cell tumor in children: a new therapeutic approach. J Pediatr Surg. 2009;44(5):949–52.PubMedCrossRefGoogle Scholar
  244. 244.
    Lal DR, Su WT, Wolden SL, et al. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251–5.PubMedCrossRefGoogle Scholar
  245. 245.
    Modak S, Gerald W, Cheung NK. Disialoganglioside GD2 and a novel tumor antigen: potential targets for immunotherapy of desmoplastic small round cell tumor. Med Pediatr Oncol. 2002;39(6):547–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and People's Medical Publishing House 2017

Authors and Affiliations

  1. 1.Department of Pathology, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations